Statistics Done Wrong

resource thumbnail

Remove from Bookmarks

Do you really want to remove?
This action cannot be undone. Choose 'Cancel' to stop and go back.
Ratings: 0
  • Which text to add here??

Added by Martin on 2015-05-28 11:44

» Viewed 573 times
» Favorited by 0 user(s)
» 0 Comments
» This resource has public visibility

Holder of Rights: Alex Reinhart

License: unknown

Creator(s): Alex Reinhart

Description:
If you’re a practicing scientist, you probably use statistics to analyze your data. From basic t tests and standard error calculations to Cox proportional hazards models and propensity score matching, we rely on statistics to give answers to scientific problems.

This is unfortunate, because most of us don’t know how to do statistics.

Statistics Done Wrong is a guide to the most popular statistical errors and slip-ups committed by scientists every day, in the lab and in peer-reviewed journals. Many of the errors are prevalent in vast swaths of the published literature, casting doubt on the findings of thousands of papers. Statistics Done Wrong assumes no prior knowledge of statistics, so you can read it before your first statistics course or after thirty years of scientific practice.

Add to Collection

You don't have any collections yet. Click here to create your first collection!

Share to Group

You don't have any group you can share this resource with: the resource is already shared to all groups you are member in. Click here to see available groups!

Create QR Code

Please select the URI for the QR Code:




Tags

sort: alphabeticallyby frequency
use blanks to separate tags

Comments

Statistics Done Wrong If you’re a practicing scientist, you probably use statistics to analyze your data. From basic t tests and standard error calculations to Cox proportional hazards models and propensity score matching, we rely on statistics to give answers to scientific problems. This is unfortunate, because most of us don’t know how to do statistics. Statistics Done Wrong is a guide to the most popular statistical errors and slip-ups committed by scientists every day, in the lab and in peer-reviewed journals. Many of the errors are prevalent in vast swaths of the published literature, casting doubt on the findings of thousands of papers. Statistics Done Wrong assumes no prior knowledge of statistics, so you can read it before your first statistics course or after thirty years of scientific practice. Alex Reinhart