Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey

resource thumbnail

Remove from Bookmarks

Do you really want to remove?
This action cannot be undone. Choose 'Cancel' to stop and go back.
Ratings: 0
  • Which text to add here??

Added by benbanbun on 2011-12-01 09:35

» Viewed 558 times
» Favorited by 0 user(s)
» 0 Comments
» This resource has public visibility

Holder of Rights: Yang Zhou

License: none (All rights reserved)

Creator(s): Yang Zhou

Description:
Probabilistic graphical models combine the graph theory and probability theory to give a multivariate statistical modeling. They provide a unified description of uncertainty using probability and complexity using the graphical model. Especially, graphical models provide the following several useful properties:
- Graphical models provide a simple and intuitive interpretation of the structures of probabilistic models. On the other hand, they can be used to design and motivate new models.
- Graphical models provide additional insights into the properties of the model, including the conditional independence properties.
- Complex computations which are required to perform inference and learning in sophisticated models can be expressed in terms of graphical manipulations, in which the underlying mathematical expressions are carried along implicitly.
The graphical models have been applied to a large number of fields, including bioinformatics, social science, control theory, image processing, marketing analysis, among others. However, structure learning for graphical models remains an open challenge, since one must cope with a combinatorial search over the space of all possible structures.
In this paper, we present a comprehensive survey of the existing structure learning algorithms.

Add to Collection

You don't have any collections yet. Click here to create your first collection!

Share to Group

You don't have any group you can share this resource with: the resource is already shared to all groups you are member in. Click here to see available groups!

Create QR Code

Please select the URI for the QR Code:




Tags

sort: alphabeticallyby frequency
use blanks to separate tags

Comments

Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey Probabilistic graphical models combine the graph theory and probability theory to give a multivariate statistical modeling. They provide a unified description of uncertainty using probability and complexity using the graphical model. Especially, graphical models provide the following several useful properties: - Graphical models provide a simple and intuitive interpretation of the structures of probabilistic models. On the other hand, they can be used to design and motivate new models. - Graphical models provide additional insights into the properties of the model, including the conditional independence properties. - Complex computations which are required to perform inference and learning in sophisticated models can be expressed in terms of graphical manipulations, in which the underlying mathematical expressions are carried along implicitly. The graphical models have been applied to a large number of fields, including bioinformatics, social science, control theory, image processing, marketing analysis, among others. However, structure learning for graphical models remains an open challenge, since one must cope with a combinatorial search over the space of all possible structures. In this paper, we present a comprehensive survey of the existing structure learning algorithms. Yang Zhou