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ABSTRACT
Tag clouds provide an aggregate of tag-usage statistics. They
are typically sent as in-line HTML to browsers. However,
display mechanisms suited for ordinary text are not ideal for
tags, because font sizes may vary widely on a line. As well,
the typical layout does not account for relationships that
may be known between tags. This paper presents models
and algorithms to improve the display of tag clouds that con-
sist of in-line HTML, as well as algorithms that use nested
tables to achieve a more general 2-dimensional layout in
which tag relationships are considered. The first algorithms
leverage prior work in typesetting and rectangle packing,
whereas the second group of algorithms leverage prior work
in Electronic Design Automation. Experiments show our
algorithms can be efficiently implemented and perform well.

Categories and Subject Descriptors
H.3.3. [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; D.2.8 [Software Engineering]:
Metrics—complexity measures, performance measures

General Terms
Algorithms, Experimentation, Measurements

Keywords
Optimization, Tags, Visualization, Layout

1. INTRODUCTION
Tag clouds have become a popular method to support

navigation and retrieval of tagged data. This paper seeks to
optimize the display of tag clouds, without concern for the
origin of the tags. We follow Hassan-Montero and Herreno-
Solana [14] in assuming that associated tags ought to be
placed near one another.

Tag clouds conceptually resemble histograms, but whereas
histograms are typically used to represent the frequencies of
perhaps a dozen items, tag clouds can represent the frequen-
cies of a hundred items. By displaying tags as hyperlinks,
we obtain interaction possibilities lacking in histograms. In
collaborative tagging, users are motivated to contribute tags
to change the appearance of the tag cloud [25].

Since the font size of a displayed tag is usually used to
show the relative importance or frequency of the tag, a typ-
ical tag cloud contains large and small text interspersed.
Copyright is held by the author/owner(s).
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(a) Flickr’s “all time most popular
tags”

(b) Sample from
ZoomClouds.com

(c) Technorati’s “Top 100 Tags”

(d) Result from Clusty.com, search “tag cloud”

Figure 1: Tag clouds from popular Web sites.

A consequence is wasteful white space that is problematic
in small-display devices, such as PDAs and cell phones, or
in tight HTML designs. Moreover, clumps of white space
are not, in the authors’ opinion, æsthetically pleasing (see
Fig. 1). As users, we prefer to work with attractive informa-
tion displays, but inline text support in HTML is designed
for paragraphs, not clouds. While prettier tag clouds can be
generated using images, browser-specific technologies (Ac-
tiveX), plugins (Flash), or complex HTML (using absolute
positioning), using only simple HTML with inline text or
tables remains the commonplace approach and offers inter-
esting challenges.

http://arxiv.org/abs/cs/0703109v2


This paper tackles the two problems of wasted space and
large clumps of white space identified above. It also con-
siders grouping related tags. We solve the first problem
by noting that it is essentially the same as the floorplan-
ning/placement problem that has been tackled for at least
30 years in the field of electronic design automation (EDA).
Thus, we propose the classic EDA algorithm, min-cut place-
ment [3], for area minimization and clustering in tag clouds.
The result looks unconventional because tags are not placed
on lines, but it is supported by nested HTML tables.

The second problem’s solution has a conventional appear-
ance that does not disrupt the left-to-right, top-to-bottom
order of tags. It is a hybrid of the classic Knuth-Plass algo-
rithm [20] for text justification, and a book-placement ex-
ercise considered by Skiena [32]. In the authors’ view, the
resulting tag clouds are visually improved and tighter.

2. RELATED WORK
Tag clouds have been attributed [37] to Coupland [6] but

have been popularized by the Web site Flickr [39] launched
in 2004. They have since appeared on numerous Web sites
including Technorati [36], del.icio.us [38], and so on. While
a mere visual representation technique, tag clouds are com-
monly associated with folksonomies and social software.

Graph drawing [7] is a branch of graph theory typically
concerned with the generation of two-dimensional represen-
tations of graphs that are easy to understand and pleasing
to the eye. While there is no absolute metric for æsthetic,
experimental evidence suggests it is important to minimize
the number of edge crossing [28]. Other metrics include
symmetry, orthogonality, maximization of minimum angles,
and so on.

Unlike graph drawing, tag-cloud drawing has received lit-
tle attention. Hassan-Montero and Herrero-Solana [14] have
proposed improving tag-cloud layouts by clustering similar
tags together and discarding some tags. Millen et al. [26]
have proposed that the user be dynamically able to remove
the less significant tags; they have also added an index so
that tags can found faster in large clouds. Bielenberg [2] has
proposed circular clouds, as opposed to the typical rectan-
gular layout, where the most heavily weighted tags appear
closer to the center. However, clouds are only one specific
instance of tag representation. For example, Dubinko et
al. [8] have proposed a model to represent tags over a time
line whereas Russel [30] has proposed cloudalicious, a tool
to study the evolution of the tag cloud over time. Jaffe et
al. [16] have integrated tag clouds inside maps for displaying
tags having geographical information, such as pictures taken
at a given location.

The problem of improving the layout of HTML pages
through special-purpose algorithms has received some at-
tention: Hurst et al. [15] showed that it is possible to make
HTML tables significantly more appealing. Generally, there
is ongoing work to improve the layout of text in HTML pages
using Cascading Style Sheet (CSS) [11].

3. BACKGROUND
The current paper builds on previous work in automated

typesetting and previous work in EDA. Minimal EDA back-
ground is required to appreciate our claim that tag-cloud
layout can be accomplished with EDA tools, but more is

required for a deeper understanding of the details and limi-
tations of our approach.

3.1 Typesetting
Automatic typesetting systems, such as TEX [19], must

quickly fit text onto the page. The result must be visually
attractive. We should break lines so that there is an even
amount of space between words.

A greedy approach fits as many words per line as possi-
ble, beginning a new line whenever further words cannot be
placed on the current line, with the possibility of sometimes
slightly squeezing the spaces between words and letters or
hyphenating a word. Sneep [33] reports that this is the ap-
proach used by most Web browsers (Microsoft Internet Ex-
plorer, Firefox, Apple’s Safari, and Opera) and most word
processors. We know of no Web browser that can hyphenate
text. Our own investigations of the Firefox 2.0 browser lead
us to believe that, for English text, line breaking is achieved
using a simple greedy approach, since no squeezing of spaces
between words or letters was observed, and text justification
of a sequence of inline elements is achieved by inserting un-
reported pixels between some elements. An advantage of
the greedy approach is it can be done on-line, without wait-
ing for the end of a paragraph. Indeed, a browser should
start displaying content before the page has been completely
loaded. Unfortunately, the greedy approach can (and fre-
quently does) produce suboptimal solutions.

For TEX, Knuth and Plass [20] compute an optimal so-
lution elegantly, using dynamic programming. Given a line
of text, the difference between the preferred width of the
text as dictated by the chosen font and the page (or col-
umn) width is used to compute the badness of the fit. Ad-
ditional penalties handle hyphenated words and variations
in the tightness of lines. Their total-fit algorithm mini-
mizes the sum of the squares of each line’s badness. Ex-
cluding hyphenation and penalties, we summarize their al-
gorithm. We label the words of a paragraph from 1 to n.
Let bk,j be the badness measure resulting from a line con-
taining the words k to j inclusively with the convention
that bk,j = 0 when k > j. Let tj be the minimal possi-
ble sum of squares of the line badnesses when the jth word
ends a line with the convention that t0 = 0. We have that
tj = mink≤j(tk +b2

k+1,j) with an exception if j = n: the last
line can be shorter without the same type of penalty. For
j > 1, let Kj = arg mink(tk +b2

k+1,j) be the last word of the

line prior to the one ending with the jth word. We can com-
pute Kj for all possible j = 1, . . . , n in time O(n2) and O(n)
space. We can then reconstruct the optimal solution recur-
sively with the following line breaks: n, Kn, KKn

, . . . , 0.
If our tags must be presented in a given order, and if all

tags have the same height, then this approach can be used
to lay out a cloud optimally. However, clouds have tags of
various heights which can be reordered, colored, etc.

3.2 EDA: Physical Design
Techniques for electronic design automation (EDA) have

received much research attention in the past few decades.
Within the EDA field, physical design of VLSI refers to the
process of translating from high-level logical circuit descrip-
tions down to a specification of the locations and shapes of
individual transistors, wires, and so forth. Today, designs
are frequently composed of a mixture of custom-designed
blocks of circuitry and licensed “Intellectual Property (IP)



blocks” of pre-designed circuitry. See Lengauer [21] for more
information on physical design.

Placement and floorplanning are two closely related stages
during many physical design flows. Both concern the as-
signment of blocks of circuitry to locations on the chip. For
instance, two submodules in a design might include (rectan-
gular) IP-blocks for a ROM and a shift register. Placemen-
t/floorplanning might decide that the ROM should have its
lower-left corner at (0,0) on the chip, rotated by 90 degrees,
and the shift register should be rotated 180 degrees and
have its lower-left corner at (200,200). This decision avoids
module overlap and leaves enough blank space for the inter-
connection wires between them that the subsequent routing
phase can succeed, while not leaving excessive space between
the items, as small chips are preferred.

While it is sometimes observed [29] that, mathematically,
floorplanning and placement solve the same problem, from a
practical viewpoint they are applied differently. Floorplan-
ning is often done early in the design stage, sometimes before
the designs of the submodules are begun. Using estimates
of the area required for submodules (and constraints on the
aspect ratio), during floorplanning we not only choose mod-
ule locations, but we also choose module shapes. Then the
modules can be custom designed according to the required
shapes. As module design progresses, more accurate shape
estimates may require that floorplanning be re-done. Floor-
planning gives a “bird’s eye” view of the layout, based on
incomplete area and wiring estimates. Placement, on the
other hand, is typically done with complete knowledge of
module shapes, the locations of interconnect “pins” on the
boundaries of the modules, and so forth.

The scenario presented assumed that floorplanning is done
with soft modules whose aspect ratios can vary as needed.
IP blocks give rise to hard modules, whose shape cannot
be adjusted. A further case arises in floorplanning when a
collection of logically equivalent hard modules are available.

A final distinction between floorplanning and (final) lay-
out is that the former is iterated, often while a human de-
signer is exploring design alternatives. Thus, floorplanning
must be fast. In contrast, during final placement, the quality
of solution is more important than the running time.

Despite the conventional distinction of floorplanning from
placement, recent tools [29] blur the distinction.

3.2.1 Placement Approaches in EDA
Placement problems are typically NP-hard: even 2-d pack-

ing problems that ignore routing are intractable [23]. There-
fore many heuristics have been proposed. Approaches in-
clude force-directed placement (e.g., considered recently by
Kennings and Vorwerk [17]), where modules are attracted to
modules with which they are strongly interconnected, and
repulsed by nearby modules in general (to try to reduce over-
lap). Force-directed methods have been adapted for graph
drawing [10, 13]. When solution quality is more important
than speed, metaheuristics such as simulated annealing [18]
are often used to guide semi-exhaustive searches. Such ap-
proaches would be justified for clouds computed once and
accessed many times. Consider a tagging site’s list of hot
tags for the previous month, optimized for a common display
size.

For speed, min-cut placement [3] is often chosen. Since
we envision tag clouds generated on-the-fly by a server, we
adapt min-cut placement to tag-cloud display.

4. MODELS FOR CLOUD OPTIMIZATION
We consider two æsthetic models, one for tags as inline

text and one for tags in nested HTML table.

4.1 Tag Clouds with Inline Text
A tag cloud with inline text is a paragraph (block) made

exclusively of inline HTML elements such as span, font, em,
b, i, strong, a, and br. A tag, even one with spaces, must
remain on a single line. White space outside the tags is in
a given default font and font size. Any area outside a tag,
but inside the tag cloud will be referred to as “white”, irre-
spective of the background color. The fonts and font sizes
corresponding to different tags are enforced using inline el-
ements with, for example, the HTML style attribute. The
width available to the tag cloud is also determined depend-
ing on the page layout, but the height of the tag cloud is
assumed to be a free parameter. Naturally, the fonts and
font sizes as well as the tag-cloud width are determined by
the Web browser as well as by the page content. While the
CSS properties letter-spacing and word-spacing allow us
to change the width of phrases, there are implementation-
specific limitations. Our primary view has the width and
height of each tag fixed, although we consider relaxing this
restriction in Sect. 5.2.4. Similarly, the horizontal space be-
tween tags must be at least as large as the normal space in
the default font. Hence, we will not include a penalty for
squeezing tags or spaces. This is in line with the current
breed of Web-browser layout engines.

While tags are commonly ordered alphabetically in clouds,
we find no evidence that users actually browse tag clouds al-
phabetically. For large clouds, a simple ECMAScript search
box highlighting tags starting with some text can make
searching specific tags convenient [26].

Let the height and width (in pixels) of the k tags on some
line be wi, hi for i ranging from 1 to k. The height h of the
line is determined by the tallest tag in the line (h = max hi)
whereas w, the width of the cloud, is fixed. For each line of
the tag cloud, there might be extra horizontal white space
ω = w−

P

wi − (k−1)W where W is the normal width of a
white space. Hence, there is at least h×ω extra white-space
area on a line. Because we fix w but not the maximal width
of a tag, we must permit ω to be negative (but only when a
very wide tag is alone on a line). Similarly, lines in text are
typically separated by some white space (dictated by the
line-height property in CSS), but it does not enter into
our model. However, when a tag is shorter than the tallest
tag on its line (hi < h), this introduces some (extra) vertical
space above the tag having area (h − hi)wi. Therefore, in
our model (see Example 1), we define the badness of a line
as h× |ω|+

P

i
(h− hi)wi where the sum is over the tags on

the line. Hence, the badness of a line is only a function of
the set of tag dimensions (wi, hi).

This badness measure does not take into account symme-
try or homogeneity. In fact, the exact placement of the tags
on the line is not measured: tags can be left aligned, cen-
tered or justified. Lines can be permuted without changing
the badness. The alignment of tags across lines, as a measure
of orthogonality, is also not taken into account. Finally, for
clouds with inline text, the order of text is presumed either
fixed or unimportant.

Example 1. Suppose that the tags on a line have the
following sizes in (width, height) format: (32,14), (45,16),



(24,12) with a specified tag cloud width w of 128 pixels and
an expected white-space width of 4 pixels between tags. The
line height is h = max{14, 16, 12} = 16. There is extra
(horizontal) white space on the line, 128− 2× 4− 32− 45−
24 = 19, contributing to the badness by 19 × 16 = 304.
The first and last tags have lesser heights than the second
tag, and they contribute respectively 32(16 − 14) = 64 and
24(16 − 12) = 96 to the badness. The total line badness is
thus 304 + 64 + 96 = 464. As another example, if we have a
single tag with dimension (130,16), then the (overfull) line
has badness 16(130 − 128) = 32.

In the spirit of the Knuth-Plass total-fit algorithm [20], we
might define the overall badness of a tag cloud as the sum of
the squares of the badnesses of each line. Merely summing
the line badnesses, without taking the squares, is also an op-
tion. Summing the squares of the badness has the benefit of
penalizing more heavily solutions with some very bad lines,
whereas a straight summation might tend to produce shorter
clouds. Or we might minimize the maximum badness across
all lines, but this might generate very tall clouds because if
even a single line is forced into having a large badness, then
all other lines can have the same badness without prejudice
to the overall measure. Recall that the lp norm of a vector
v is defined as ‖v‖p = p

p
P

i |vi|p when 1 ≤ p < ∞ and as
maxi |vi| when p = ∞. The three aggregates above can be
described by the l2, l1, and l∞ norms respectively.

4.2 Tag Clouds with Arbitrary Placement
Our model for this section assumes that

1. tags may be reordered and placed arbitrarily (but with-
out overlap or rotation) in the plane;

2. tag relationships are known, and strongly related tags
should be in close proximity;

3. tag-cloud width has an upper bound;

4. tag-cloud height should be small, to reduce scrolling;

5. (optional) tags may be deformed slightly (made shorter
but wider, for instance), so long as tag area remains
(nearly) constant;

6. (optional) large clumps of white space are bad.

In contrast to clouds with only inline text, there is no
analogue to a “line” of tags when arbitrary placement is
allowed. Therefore, when adapting the model from Sect. 4.1,
it is not clear how to combine the various undesirable white
areas that are in excess of a tag and its small surrounding
border. A simple and appealing method is to sum this bad
area, which is equivalent to minimizing the area occupied
by the tag cloud.

Another (possibly conflicting) goal is to obtain spatial
clustering of semantically related tags. If we form a graph
with tags as vertices and edge weights indicating the strength
with which two tags are linked, a reasonable measure of (un-
desirable) spatial non-proximity is

X

p,q

w(p, q)d(p, q), (1)

where p and q are placed tags linked with strength w(p, q)
and separated spatially by distance d(p, q). Small values in-
dicate better clustering. In experiments, we used Euclidean
distance for computing d(p, q).

4.3 Tag Relationships
The previous subsection assumed a graph-based model

with a binary tag-similarity relation. Yet, higher-degree re-
lations may also make sense, loading to a hypergraph-based
model.

One method of determining tag relationships counts co-
occurrences [14], when a pair of tags have been assigned
to the same resource (e.g., a photo). Viewed this way, re-
lationships are binary and can be modelled as edges in a
graph. Another view is that each resource corresponds to a
hyperedge in a hypergraph, whose members consist of the
tags. Translation between these views can be achieved by
replacing each hyperedge by a clique.

For example, consider a resource (perhaps a photo) tagged
“baby, tears, bottle, diaper”, another tagged “bottle, gas,
beer”, another tagged “beer, rioting, sports”, and a fourth
tagged “gas, tear gas, tears, rioting”. (See Fig. 2(a).) The
second view has 4 hyperedges, whereas the first view has
`
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2

´

+
`

4

2

´

+
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3

2

´

+
`
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2
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edges. For instance, the hyperedge
{bottle, gas, beer} from the first view would correspond to
the edges { (bottle, gas), (bottle, beer), (gas, beer) } in the
second view.

In EDA, the rôle of tags is played by modules and the
natural relation between modules is “have a wire that inter-
connects several modules”, leading to a hypergraph model.
We argue in Sect. 5.2.5 that tag-cloud display should instead
use a graph model.

5. SOLUTIONS
We propose different approaches to the two major prob-

lems. For inline text, dynamic programming or shelf-packing
heuristics can be applied. For arbitrary placement, we use
the min-cut placement algorithm from EDA.

5.1 Cloud Layout with Inline Text
Our first breed of algorithms take an ordered list of tags

and choose where to break lines. We first designed a simple
greedy algorithm: tags are added to the current line one by
one, inserting a white space between them, until the line is
full. It runs in O(n) time and matches what is done by most
browsers. When a tag is too wide to fit on even an empty
line, a new line is created for this tag alone. Second, we
implemented a dynamic-programming solution. Our algo-
rithm is nearly identical to the O(n2) time and O(n) space
Knuth-Plass algorithm [20] given in Sect. 3.1, except that:

• the last line is not an exception: it cannot be half
empty without penalty;

• if, and only if, a tag exceeds the maximal width, then
it will be given a line of its own; no other overfull lines
are allowed.

The second breed of algorithms reorders tags, attempt-
ing to decrease the badness. Finding an optimal ordering is
NP-hard: when the required horizontal white space between
tags is zero, we have the NP-hard Strip Packing Problem
(SPP) [23]. As a rough heuristic to assess the influence of
order, we randomly shuffle tags several times (10 in our ex-
periments), apply the dynamic-programming algorithm to
place the tags optimally, and keep only the best solution.
Other simple heuristics are based on approximation algo-
rithms for SPP, although SPP is only a special case of our
problem. We use Next Fit Decreasing Height (NFDH)



gas

baby

diaper

tears

bottle

beer

rioting

tear gas

sports

(a) Bipartitioning: before

rioting

Left Right

baby

tears

bottle

diaper sports

gas

beer

tear gas

(b) Bipartitioning: after

Figure 2: Bipartitioning (hypergraph view). This
cut includes two hyperedges, or five edges.

and First Fit Decreasing Height (FFDH) from Coffman
et al. [5]. They are SPP 2-optimal and SPP 17/10-optimal,
respectively, and they run in O(n log n) time [23]. Both first
sort tags by non-increasing height. NFDH is then the ap-
plication of the simple greedy algorithm described above.
FFDH places each new tag on the first available line, start-
ing from the first line ever created, and creating a new line
at the end whenever necessary. Tags exceeding the maximal
width are placed on a line of their own. Because we typically
have several tags with the same height, but different width,
we further refined FFDH to our First Fit Decreasing

Height, Weight heuristic (FFDHW). With FFDHW, tags
continue to be primarily sorted by (non-increasing) height,
but ties are broken by (non-increasing) width.

We could better assess the heuristics if we could obtain
optimal solutions to this NP-hard reordering problem. How-
ever, for interesting clouds (e.g., n = 100), the ordering
search space is huge: n! = 100! ≈ 9.33 × 10158. We sus-
pect branch and bound, or other sophisticated enumerative
approaches, are too slow even for experimental work.

5.2 Cloud Layout with Arbitrary Placement
Fast arbitrary tag placement is achieved with min-cut

placement, optionally followed by floorplan sizing.

5.2.1 Min-cut Placement
Min-cut placement [3] recursively decomposes a collection

of tags by bipartitioning : splitting the tags into a “Left”
group and a “Right” group. Then each group is recursively
split, probably into “Top” and “Bottom” groups, although
re-splitting into “Left” and “Right” may also occur. Ideally,
the bipartition must be fairly balanced —the number of tags
or total areas of tags, for instance, must be similar for the
two groups. Also, the cut size (the number — or perhaps
total weight — of edges/hyperedges containing tags in both
groups) should be small. Since these two goals may con-
flict, various approaches can be considered. For instance,
we specify a balance constraint and then try to minimize
the cut. (See Fig. 2 for an example.) While bipartitioning
is NP-hard, well-known heuristics exist.

During partitioning of a group of tags, there should be an
influence of “outside” tags. Therefore, we track how strongly
each tag is connected to external tags known to be above,
below, leftward, and rightward of the group of tags being
bipartitioned. See Fig. 3, where we see that even though tags
beer and sports are connected, tag beer has an external
leftward pull but sports does not. This may encourage
partitions where these two tags are separated. Integrating
external pulls into bipartitioning is often handled in min-cut

external sports

rioting

tear gas
gas

beer

tears

bottle

Figure 3: In future horizontal partitioning there will
be a bias to encourage all tags (except sports) to the
left side of their area.
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Figure 4: Slicing tree and associated slicing floor-
plan. Cut-lines numbers indicate slicing-tree nodes.

placement by creating two dummy tags, “externalLeft” and
“externalRight” and insisting that these dummy tags cannot
change location [9]. Tag “externalLeft” is a surrogate for
all external tags to the left of the nodes being partitioned.
“ExternalTop” and “externalBottom” are similar.

Under reasonable assumptions about tag sizes and bipar-
tition balance requirements, given n tags with m ∈ Ω(n) re-
lationships, min-cut placement can run in O(m log n) time if
we use the Fiduccia-Mattheyses bipartitioning heuristic [12].

5.2.2 Slicing Floorplans
Recursive bipartitioning’s effect can be represented in a

slicing tree [34]. See, for instance, Fig. 4(a). Leaves store
tags. Internal nodes specify the relative placements of tags
in the subtrees, and they are labelled Horizontal or Vertical,
depending how they divide tags. Each internal node is nat-
urally associated with a placement area into which all tags
in its subtree will be stored. The node also slices its place-
ment area, either horizontally or vertically, assigning each
of its subtrees to one of the sub-areas. At the finest level,
each tag has been assigned a particular area into which it,
and only it, may be placed. The resulting subdivision of the
placement area is a slicing floorplan (see Fig. 4(b)) and can
be used for placement: a straightforward tree traversal can
assign precise locations to a “tightest possible” placement
that corresponds to the slicing floorplan.

5.2.3 Nested Tables for Slicing Floorplans
Given a slicing tree, it is simple to make the browser ren-

der the tag cloud. (See Fig. 5.) We use a trick: each internal
node in the slicing tree corresponds to a 2-element table in
HTML. The table is either 2×1 or 1×2, depending whether
the slicing-tree node is tagged ‘H’ or ‘V’. If the node’s chil-
dren are not leaves, then the table’s cells contain sub-tables.
For example, node 6 in Fig. 4(a) leads to



(a) Displaying table borders

(b) Displayed with appropriate CSS

Figure 5: Slicing floorplan shown as nested tables.

<table><tr>

<td> <table>

<tr><td>beer</td></ tr>

<tr><td>gas</td></ tr>

</ table></td>

<td>r i o t i n g</td>

</ tr></ table>

CSS (e.g., border-spacing:0px) then reduces whitespace.

5.2.4 Choosing Aspect Ratios
Although the orientations chosen for the cuts in the slicing

tree have perhaps the largest effect on the eventual shape of
the layout, floorplanning can also choose which precise shape
to use. In VLSI, there may be a tall skinny implementation
of a ROM or a functionally equivalent square implementa-
tion. With tag clouds, we may be willing to stretch or squash
a tag somewhat, as long as its total area remains more-
or-less constant. This can be accomplished using CSS’s
font-stretch [35]. Unfortunately, few browsers act on this
property yet; to simulate it, we adjusted font-family, as
well as letter-spacing, font-weight and font-size.

This floorplans sizing can be done efficiently [31, 34] for
slicing floorplans. In particular, it runs in Θ(s log s) time
if s represents the sum, taken over the number of shape
options for each tag. Yet for general floorplans this problem
is intractable [34].

5.2.5 EDA Placement Is Not (Quite) Tag Placement
Overall, the EDA problem of placement/floorplanning and

our problem of tag-cloud layout are almost the same. Can
we simply feed our tag-cloud data to an EDA placement
tool and then extract a final placement? The answer is a
qualified “yes”: we have essentially done this, but we found
it appropriate to modify the EDA tool.

Long tags can have aspect ratios that would be unusual for
EDA. In placement or floorplanning, it is often permissible
for cells to be rotated by 90 degrees. With rotation, every
tall, thin module can become a short, wide module and thus
there is a symmetry. With tags, a 90 degree rotation might
be artistically interesting but hard to read. Thus we forbid
such rotation. Rarely do we see a tag that is taller than

it is wide; moreover, we have constrained the cloud width
(but not height). Thus, we must handle widths and heights
asymmetrically.

In some EDA design styles, the interconnect wiring must
run between modules, rather than atop them. Thus, ade-
quate white space must be allocated throughout the layout
to accommodate wiring. Superficially, tag clouds are simi-
lar: we should not abut two tags without leaving some white
space between them. However, in EDA the amount of white
space at any particular area depends on the number of wires
that must pass though that area. This is much more com-
plicated than with tags, where a fixed boundary, or perhaps
one proportional to the font size, is appropriate.

In both floorplans and tag clouds, strongly coupled items
should be close to one another. For EDA, coupling comes
from nets, which are best modelled as hyperedges in a hy-
pergraph. Each net is a subset of modules, and electrical
connectivity will eventually be achieved by finding a span-
ning (or Steiner) tree over the modules belonging to the net.
The transitivity of electrical connections is a factor: consider
the wiring necessary when a single net includes two tightly
packed clusters of 10 modules each, found at opposite ends
of the layout. A single wire can traverse the long distance;
min-cut should count a cost of 1 for this net when biparti-
tioning. However, this behaviour is intuitively wrong when
considering one cluster of 20 related tags. Each tag in the
cluster is related to every other tag, and thus dividing them
should be much more expensive: we are splitting a clique in
an ordinary graph.

Finally, the expected input sizes and acceptable running
times and solution quality levels may be different. Place-
ment problems would frequently have thousands of elements,
more than any reasonable tag cloud. Also, obtaining a high-
quality solution would be more important than obtaining a
solution quickly. On the other hand, any technique for on-
demand tag-cloud creation for servers must necessarily be
fast. “Fast floorplanners” (such as McFarland describes [24])
are used interactively with only a coarse subdivision of the
design into top-level modules. These would more closely
match the input sizes and response-time requirements of
tag-cloud placement.

6. EXPERIMENTAL RESULTS
To evaluate our methods, we obtained test data from sev-

eral source, implemented the methods, and analyzed the
results they obtained.

6.1 Test Data
Tags and their accompanying importance levels (0-9) were

obtained from ZoomClouds and Project Gutenberg; on av-
erage, clouds had 93 tags. For each of the 10 importance lev-
els, we defined CSS classes with corresponding style choices:
font sizes ranged from 8pt to 44 pt and the selected font
family was arial. However, our techniques need the size of
each tag’s bounding box, and we chose not to limit ourselves
to monospace fonts. Experience showed insufficient accu-
racy from predictions based on knowing the text, font size,
and various CSS parameters. Therefore, our programs are
given tag bounding-box sizes as part of their input. These
were obtained using ECMAScript and the DOM attributes
offsetWidth and offsetHeight applied to an HTML span

element.



Our requirement for browser-specific display information
means that practical use of these techniques is perhaps best
done on the client in ECMAScript, although server-side pro-
cessing (using AJAX, for instance) is not impossible. Our
experimental program for in-line text was written in Java,
whereas the program for arbitrary placement was written in
C; thus layout times may reflect a server environment.

6.1.1 ZoomClouds
ZoomClouds [1] is a Web site using the Yahoo! Content

Analysis API to produce historical tag clouds for any given
RSS feed using some content-processing heuristic. They
make available a REST API producing an XML descrip-
tion of a tag cloud including tag names and weights. None
of their tag clouds had more than 100 tags. We retrieved
65 different tag clouds with an average of 94 tags per cloud.
For each tag cloud, we normalized the weights with a linear
function so that they were integers between 0 and 9. We
chose most tag clouds randomly with the random sources
function of the Web site, but we also included major Web
sites such as USA Today, Slashdot, the New York Times,
L.A. Times, as well as major blogs such as Scobleizer and
Boing Boing.

6.1.2 Project Gutenberg E-books
Test data, including tag relationships, were also derived

from word co-occurrences in 20 e-books produced by Project
Gutenberg [27]. Initial processing removed all nonalphabetic
characters, converted all characters to lower case, and re-
moved short words (those with 5 letters or less). The re-
maining words became tags. Only the most frequent k tags
were kept (we used k = 20, 50, 100 and 200) in our tests.
The importance i of tag T was determined as i = ⌊10 t−r

f−r+1
⌋,

where f , r and t are respectively the frequencies of the most
frequent tag, the least frequent retained tag, and the tag T .

Word co-occurrences determined the relationship strength
between tags, as in recent work on tag-cloud display [14].
Two consecutive words form a (distance 0) co-occurrence.
Each pair of tags had a relationship of strength s if there
were s ≥ 2 such co-occurrences in the e-book.

6.2 Tag Clouds with In-line Text
Our in-line text algorithms were implemented in Java 1.5.

On a 2.16 GHz Intel Core 2 Duo processor, we ran 5000 tests
on a large del.icio.us tag cloud [38] (140 tags, presented
in Fig. 1): the average wall-clock running time for one tag
cloud optimization was well under 1ms for all algorithms
(except the 10-random-shuffle heuristic), and under 0.2 ms
for the greedy algorithms. Our code was not particularly
optimized for speed.

We tested our algorithms on both the 65 ZoomClouds
tag clouds and the 80 Project Gutenberg tag clouds. Fig. 6
presents a visual example of the result of 4 heuristics applied
to one tag cloud. Alphabetically-sorted tags are, on average,
40% larger than weight-sorted tags. Dynamic programming
does not reduce the area of the tag clouds for weight-sorted
tags, but offers a reduction of about 3% for alphabetically-
sorted tags. The random-shuffling algorithm does worse
than sorting by weight1. The NFDH heuristic gives about
the same average tag-cloud height as does the weight-sorted
greedy algorithm, but the FFDH and FFDHW heuristics
offer an average reduction of about 3% in the height of

1even trying 5000 shuffles (not shown).

(a) Alphabetically sorted
tags, greedy algorithm

(b) Alphabetically sorted
tags, dynamic programming

(c) Tags sorted by weight,
greedy algorithm

(d) FFDH heuristic

Figure 6: Screen shots of a tag cloud optimized using
different algorithms: the greedy algorithm is similar
to normal browser display.

the ZoomClouds tag clouds, and of 1% and 2% respectively
for the Project Gutenberg tag clouds. Varying our bad-
ness model aggregates used by the dynamic-programming
algorithms shows that using the maximum line-badness ag-
gregate (l∞) can generate unacceptably tall tag clouds (3
times taller than normal); however, the difference in height
between the sum (l1) and sum of squares (l2) aggregates is
well below 1%, though the l1 aggregate has a small edge, as
expected. While tighter clouds do not have large clumps of
white space, they do not necessarily appear more symmetric.

The results we obtain with the badness measures are simi-
lar (see Fig. 7). The most competitive algorithms are FFDH,
FFDHW and either the greedy or dynamic-programming al-
gorithms applied to weight-sorted tags. The random-shuffles
or alphabetically-sorted-tags algorithms are not competi-
tive. When considering the l1 norm of the line badnesses,
the FFDH and FFDHW improve over the weight-sorted al-
gorithms by 24% for the ZoomClouds data set, and by 11%
and 15% respectively for the Project Gutenberg data set.
When considering the l2 norm, the main difference is that
dynamic programming suddenly improves over the greedy
algorithm (for weight-sorted tags) by 7% whereas FFDH and
FFDHW only manage to improve over dynamic program-
ming by 1% or 2%. In short, if the l1 norm is chosen, the
FFDHW heuristic is the clear winner and dynamic program-
ming is not worth the effort, whereas if the sum of squares
is preferred, it is a close race, with dynamic programming
applied to weight-sorted tags a competitive solution.

6.3 Tag Clouds with Arbitrary Placement
We began with a simple EDA tool, a straightforward min-

cut floorplanner previously implemented in C by one of the
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(c) l1 norm, ZoomClouds
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(d) l2 norm, ZoomClouds

Figure 7: Average aggregated badnesses (in pix-
els), the 10-random-shuffles heuristic has the label
“10” while the optimal solution was computed by
dynamic programming.

authors. The floorplanner used techniques described by vari-
ous authors [21, 22, 24, 40]. Various modifications addressed
the concerns of Sect. 5.2.5.

We first modified our program to perform graph biparti-
tioning rather than hypergraph partitioning. With 12 or
fewer tags, bipartitioning is done exhaustively. The two
parts must be somewhat balanced in their total tag areas:
the larger part’s tag area may be at most twice the tag area
of the smaller part. Subject to this constraint, the total
weight of edges crossing the partition is minimized. With
more than 12 tags, the system uses the Fiduccia-Mattheyses
heuristic [12], taking the best result of 10 runs, each starting
with a different random bipartition. With these larger prob-
lems, we require more balanced partitions. Again, balance
is based on total tag area, but with the constraint that the
size difference must be no larger than the area of the largest
tag in the set being bipartitioned.

The original floorplanner assumed a routing model where
routing area needs to be reserved in the areas around each
cell [40]. Estimating the correct amount of “padding” area
is not required for tag placement. We replaced this complex
code by an estimate that a 2-pixel horizontal space was re-
quired on the left sides of a tag, except where the tag was
on the left edge of the layout area.

The original floorplanner also preferred square layouts.
However, for tag clouds, we have a fixed width bound that
should not be exceeded. This bias affected the cut orien-
tations chosen for the slicing tree, since during placement
simple heuristics monitor the estimated aspect ratios of each
floorplan area. Originally, areas were divided by vertical
cuts when they were wider than they were high. This is
a relative decision and does not enforce an absolute width
bound. Hence, we added an estimate of the absolute width
of a floorplan area. Comparing this estimate against the
widths of the tags for that area, we may determine that,
despite a possibly non-square floorplan area, a vertical cut
cannot be permitted. Now, for large clouds, near the roots

Figure 8: Large tag cloud generated from a Project
Gutenberg e-text.

No. Tags Iters Finish Size C-hard C-soft
20 3.0 38.5 1.0 24.5 339.0
50 2.2 43.1 0.9 38.0 865.5

100 1.1 39.2 1.1 39.0 1765.0
200 1.0 64.6 1.4 59.0 6429.5

Table 1: Times (ms) to make and size the slic-
ing tree. Times for block-packer compaSS are also
shown.

of our slicing trees there continues to be frequent switch-
ing between horizontal and vertical cuts. However, near the
leaves, horizontal cuts predominate.

Fig. 5 shows an example, a 20-tag cloud that we obtain
from Bulwer-Lytton’s The Caxtons [27, etext 7605]. The
word ‘father’ has been chosen in a shorter/wider variation,
whereas the word ‘before’ was chosen to have a taller but
narrower shape than the default. Although it may not be
possible to read the smaller tags in the 200-tag cloud (Fig. 8)
from Rodenbough’s 1885 text on the Anglo-Russian dis-
pute [27, etext 7320], the cloud shows the effect of tag re-
sizing (‘afghanistan’ being vertically compressed and ‘kan-
dahar’ being horizontally compressed). The organization of
the smaller tags into (local) columns also confirms that hor-
izontal cut lines predominate near the slicing-tree leaves.

6.3.1 Results
Results are shown in Tables 1–3. In the first table, the

‘Finish’ column gives the over-all time, in milliseconds on
a 1.7 GHz, Pentium 4-based machine. Interestingly, the re-
sults were obtained faster for 100-tag clouds than for 50-tag
clouds: a tuning parameter was used in the modifications
made so that the floorplanner would not exceed a 550 pixel
width. If set incorrectly, the placement can be much nar-
rower, or perhaps wider, than 550 pixels. If this is detected,
the program adjusts the parameter and tries again. For the
smallest tags, an average of 3 attempts per cloud were made



Greedy
No. Tags Min-cut (sorted) (random) compaSS

20 31 37 46 29
50 63 62 85 59
100 111 99 139 98
200 192 165 231 170

Table 2: Average area (kilopixels) for the bounding
boxes of tag clouds.

(column ‘Iters’). From the ‘Size’ column, we see that floor-
plan sizing was only a small part of the over-all time. For
comparison, we ran the block-packing program compaSS [4]
against our data. It does not consider tag proximity, but
simply seeks a tight layout. The ‘C-hard’ column uses only
the normal sizes of tags, whereas the ‘C-soft’ column shows
that unacceptably long runtimes are required for the resizing
variant, where tag areas are fixed but each tag’s aspect ra-
tio is continuously variable over a range. (compaSS was fast
when when given a set of 3 aspect variations per tag. Unfor-
tunately, it assumes exactly identical area for each variation.
However, with indirect control over how the browser renders
the tag variations, the three areas are not quite identical.
Thus, we cannot compare solution qualities fairly.)

The solution area was examined in Table 2, and it was
compared against two row-based tag layouts: first, when
the tags were given in descending order (by height); second,
when the tags were randomly ordered. The last column
shows the solution obtained by compaSS.

The sorted greedy heuristic used 2–19% less area than
our min-cut heuristic (although the random greedy heuristic
used 20–48% more area than ours). Compared with com-

paSS, min-cut used 7–13% more area. These results are
not surprising: compaSS and the sorted greedy heuristic
seek only a tight packing, whereas min-cut also seeks to
group together strongly related tags. With 200 tags, it is
remarkable that the more sophisticated compaSS approach
was not as good as the greedy heuristic. This might be at-
tributed to special characteristics of our data, such as the
non-squareness of most tags. For the greedy approaches
and compaSS, only the default shape of each tag was used.
When tags were instead available with continuously variable
aspect ratios (over the range used by the 3 choices avail-
able to our min-cut program), compaSS was able to reduce
area by approximately 12%, compared with its performance
when only the default shape was allowed. (However, Table 1
shows that this required more than 6 s on large clouds.)

The min-cut approach clearly (and unsurprisingly) out-
performed greedy approaches and compaSS when we tested
proximity for semantically related tags (see Table 3). It
considers this factor, unlike the others.

Although compaSS and the sorted greedy approach both
packed tightly, and although both are oblivious to tag rela-
tionships, compaSS is apparently better at grouping than
the sorted greedy heuristic. This is counterintuitive and re-
veals a weakness in using Equation 1 to assess grouping: a
tight, square packing will score better than a loose or rectan-
gular packing. It appears that compaSS often uses far less
than its maximum 550 pixel width. By nature, the greedy
approach leads to widths of almost 550 pixels; hence, its
small clouds have large aspect ratios. On small clouds, our

Greedy
No. Tags Min-cut (sorted) (random) compaSS

20 61 124 120 65
50 166 282 271 180
100 296 465 482 382
200 438 693 765 654

Table 3: Average total weighted distance (×103) us-
ing Equation 1. Distances were computed between
the lower-left corners of tags.

min-cut floorplanner seeks a square layout, assuming that
each tag is itself approximately square. The effect is that
small min-cut clouds tend to have aspect ratios similar to
a typical tag: in other words, their aspect ratios often lie
between compaSS-produced clouds and clouds produced by
the greedy heuristic. With more tags, the width bound be-
gins to affect all heuristics similarly, so the effects due to
aspect-ratio differences are reduced.

7. CONCLUSIONS
Future work should include browser-based implementa-

tions. For in-line text, our cloud-badness model is proba-
bly incomplete since it ignores some basic symmetry issues:
some lines may only have a few short tags, whereas taller
lines are densely packed. It is also incomplete because it does
not take into account tag similarities, but it is not necessar-
ily easy to take existing tag clouds and infer an interesting
similarity measure between tags. Tag-cloud coloring is also
open to optimization.

Despite the differences between tag-cloud layout and EDA
placement, we plan to test an industrial strength min-cut
placement tool such as Capo [29], to see how well it places
tags. However, a better metric is needed for assessing clus-
tering of related tags, and optimizing according to some new
metric would likely require substantial changes to an exist-
ing EDA tool.

HTML and its presentation counterpart, CSS, will prob-
ably never directly account for representations such as tag
clouds. However, CSS3 [11] may introduce some new in-
structions which may alleviate some problems. For exam-
ple, while it is possible to justify an inline tag cloud with the
text-align property, the last line is typically not justified,
a limitation addressed by the upcoming text-align-last

property. Also, the new hyphenate property might encour-
age the use of slightly more sophisticated line-breaking al-
gorithms in browsers.
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