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Abstract

A course generator automatically assembles
learning objects retrieved from one or several
repositories to a greater unit. Different frame-
works for course generation exists, but only a few
allow the representation of sophisticated peda-
gogical knowledge. In this paper, we describe
course generation based on pedagogical tasks
and methods, formalized in a hierarchical task
network (HTN) planner. We describe the mod-
erate constructivist learning strategy we imple-
mented in this framework, problems that arouse
from using HTN planning and their solutions. A
first evaluation supports the practical value of our
approach.

1 Introduction
Course generation automatically assembles learning ob-
jects retrieved from one or several repositories to a greater
unit, a course. The learning objects are not assembled ran-
domly, but support the user to reach a learning goal.

Such goals require a sophisticated representation and us-
age of pedagogical knowledge. Although course genera-
tion has been a topic of research since long, only a few
frameworks exist that offer a representation of pedagogical
knowledge powerful enough to encode a variety of generic
pedagogical approaches. In this paper, we will describe our
approach to course generation, which is based on hierarchi-
cal task network (HTN) planning. We will start by review-
ing related work (Section 2). Then, Section 3 provides a
short introduction to HTN planning. The main part of the
paper describes and exemplifies the course generation as
developed for LEACTIVEMATH.

2 Related Work
Early approaches on course generation date back to the
eighties [Peachy and McCalla, 1986; Murray, 1989].
With the Generic Tutoring Environment (GTE), Van Mar-
cke[van Marcke, 1992; van Marcke, 1998] introduced the
separation between instructional tasks (representations of
pedagogical activities) and instructional methods (repre-
sentations of different ways of achieving the activities).
Most of this instructional knowledge is independent of the
learning domain. Vassileva[Vassileva, 1995] build on this
approach and added several layers of rules that handled dif-
ferent aspects of course generation (e.g., selection of the
main strategy or of the appropriate media types, etc.).

Subsequent course generation frameworks (e.g.,[Specht
and Oppermann, 1998; Steinackeret al., 1999]) did not

reach such a high level of representing pedagogical knowl-
edge (or at least never provided sufficiently detailed de-
scriptions).

Today’s course generation focuses less on pedagogical
knowledge, but more on Semantic Web and metadata, e.g.,
on using ontologies of the subject domain to automati-
cally calculate the best path through the learning mate-
rial [Karampiperis and Sampson, 2004], or on calculating
a learner specific ranking of and trail through learning ob-
jects retrieved according to his query[Keenoyet al., 2004].
These approaches use rather simplified pedagogical knowl-
edge, e.g., to select those learning objects with the lowest
typical learning time. However, to generate a course which
is adapted to the individual learner’s goals and needs and
which is based on state of the art pedagogical strategies re-
quires more elaborate expertise.

In a former project, we used an expert system (JESS,
[Friedman-Hill, 1997]) to represent elaborated course gen-
eration knowledge as rules[Ullrich, 2003]. However, this
approach had severe scaling problems: in case more than
10 users used the system simultaneously, the latency time
increased over an acceptable amount. While technical op-
timizations might have alleviated this problem, using rules
made it difficult to use the hierarchical structure inherent in
pedagogical knowledge. Therefore, we decided to investi-
gate a new approach based on HTN planning.

3 Hierarchical Task Network Planning
In HTN planning a planning problem is represented by
sets of tasks (task networks); methodsdecompose non-
primitive tasks into sub-tasks until a level of primitive
tasks is reached, which can be solved byoperators[Erol
et al., 1994]. Because HTN incorporates heuristic knowl-
edge in the form of the decomposition methods, it is a
very efficient planning technique. It also offers a rela-
tively straight-forward way for representing human expert
knowledge. The current version of our course generator
uses the HTN planner JShop2[Ilghami and Nau, 2003],
a domain-independent planner that compiles domain de-
scriptions into domain-specific planners.

Figure 1 contains an example of a method (for the time
being, we will focus on its HTN related aspects, the un-
derlying pedagogical strategy will be explained in Sec-
tion 4.1). The method is applicable in case an open task ex-
ists that matches withteachConcept ?c , with ?c be-
ing a variable (indicated by the prefix?). Then, because the
method has no preconditions (the empty parentheses in line
two), the task will be decomposed in seven subtasks. The
subtasks annotated with the prefix! are primitive tasks,
i.e., tasks that will not be further decomposed.



(:method (teachConcept ?c)
()
((!startSection NewBook ?c)

(introduce ?c)
(develop_concept ?c)
(practice ?c)
(connect ?c)
(reflect ?c)
(!endSection)

)

Figure 1: An HTN method for teaching a concept

3.1 Challenges of HTN Planning

HTN planning faces several difficulties if employed in a
Web-based context. However, today most learning en-
vironments are Web-based. As an example, the compo-
nents of the learning environment ACTIVEMATH [Melis
et al., 2001], e.g., the learner model, the learning object
databases, and learning supporting tools such as a concept
map[Melis et al., 2005], are distributed over the Web and
available as Web services. Such a setting poses the follow-
ing challenges:

Distributed Content In a distributed environment, a
course generator should be able to integrate content from
several databases. This involves the difficulty that tradi-
tional AI planning requires evaluating a method’s precondi-
tions against the planner’s world state. However, this would
require mirroring all the content stored in the repositories
(or its metadata) in the world state. This is simply infeasi-
ble.

Dynamic User Information Similar problems arise with
respect to user information. Similar to most systems AC-
TIVEMATH uses information about the learner stored in a
learner model. Part of this information, e.g., the knowl-
edge state, is frequently updated. Thus, the naive solution
of adding the learner information in the world state of the
planner is unpractical, especially as the learner model can
cover a vast range of content and it is unknown exactly
which of the information will be relevant.

Learning Services A vast range of services that support
the learning process in various ways have been developed,
for instance tools that stimulate meta cognition[White
and Shimoda, 1999] or perform assessment[Conejoet al.,
2004]. A course should integrate these services, not ar-
bitrarily but in a pedagogically sensible way: during the
learning process, at specific times the usage of a tool will
be more beneficial than at some other time. For instance,
reflecting over the learned content may be most effective at
the end of a lesson. Additionally, access to these services
may vary, depending on the configuration of the learning
environment and their general availability. Therefore, the
planning needs to take into account dynamic information
about these services.

In the following, we will describe how we represent ped-
agogical knowledge in an HTN planning framework and
how we overcome the above limitations.

4 Representing Course Generation
Knowledge in an HTN planner

4.1 Pedagogical Background
In LEACTIVEMATH, the University of Augsburg and the
DFKI are jointly developing moderate constructivist ped-
agogical strategies that rely on the “Programme for Inter-
national Student Assessment” (PISA) framework,[OECD,
1999].

Instead of exclusively assessing curriculum based
knowledge, PISA focuses on mathematical literacy and
competencies. Mathematical competencies are general
mathematical skills such as problem solving, the use of
mathematical language and mathematical modeling. In
LEACTIVEMATH, authors annotate exercises and exam-
ples with the competencies they train (in addition to a sub-
set of standard LOM metadata[IEEE Learning Technology
Standards Committee, 2002]). The pedagogical strategies
take these competencies into account: first, they ensure that
every course contains a diversity of competencies. Sec-
ondly, they primarily select exercises of competency levels
just outside the learner’s current mastery state.

We identified six different pedagogical scenarios, each
corresponding to specific needs and high-level learning
goals of the user: LearnNew, Rehearse, Overview, train-
Competency, Workbook, and ExamSimulation. For in-
stance, the scenario LearnNew provides the student with
an in-depth course that teaches him all necessary material
to fully understand the target concepts right from the start.
For each scenario, we formalized the pedagogical knowl-
edge required to generate courses supporting the learner to
achieve the respective learning goals.

4.2 Course Generation by HTN Planning
Course generation knowledge lends itself to being repre-
sented hierarchically. Additionally, as van Marcke[van
Marcke, 1992] showed, by representing the pedagogical
objectives as tasks and the ways of achieving the objects
as methods, sophisticated pedagogical strategies can be en-
coded. In HTN planning, tasks are a basic principle, too.
Therefore, in a first step, we will bring together the notion
of pedagogical and HTN task.

A pedagogical task corresponds to the goals a learner
wants to achieve. It combines the two dimensions domain
(content) and educational goal. Formally, a taskt is de-
fined as a tuplet = (l, c), wherel is a pedagogical objec-
tive andc a unique identifier of a learning object (content
goal). Whilec specifies the concept the course will primar-
ily target, the pedagogical objective determines the kinds
of learning objects selected forc.

In JShop, a task is defined as a predicate symbol fol-
lowed by several arguments. Hence, a pedagogical task can
be mapped to a HTN task by mapping the pedagogical ob-
jective onto the predicate symbol, and the content goal onto
the arguments. Because of this straightforward mapping, in
the following we will no longer distinguish between peda-
gogical and HTN tasks.

A top-level task that serves as a starting point of course
generation isteachConcept id . The goal of this task
is to assemble a structured sequence of learning objects
that help the learner to understand the content goalc . Us-
ing different collections of tasks and methods (i.e., tutorial
strategies), this task can be planed differently. Hence, the
task-based approach can serve to represent a variety of ped-
agogical strategies.



Figure 1 illustrates a method developed in LEACTIVE-
MATH based on pedagogical principles. It describes how
the task of teaching a concept is decomposed in the sce-
nario LearnNew. This decomposition follows a course of
action in a classroom which implements constructivist ele-
ments and distinguishes between different stages that occur
while learning a new concept. Similar solutions were de-
veloped for other high-level learning goals.

!startSection and !endSection are primitive
tasks, which serve to provide additional structure. They
open and close sections within a course. The introduction
(introduce ?c ) makes the aims of the learning process
explicit. It provides an overview to the learner and makes
the learning process more transparent. The stage of devel-
oping a concept serves to provide the essential information
about the concept to the learner, and will be explained in
more detail in the next paragraph. The fourth subtask of
teaching a concept trains the application of the concept.
The final stages, connect and reflect, serve metacognitive
purposes. They support the learner to put the concept in its
context with respect to the other learning material, and help
him to get an overview of his knowledge state.

As a detailed example, consider the two methods for de-
veloping a concept shown in Figure 2. The upper method
uses information about the user that is retrieved from a
learner model and is applicable if the learner exhibits a high
math anxiety. In that case, first the concept is inserted in
the course via the primitive task!insertElement ?c .
Then, the insertion of an explanation and an example illus-
trating the application of the mathematical concept aim at
alleviating the anxiety. The bottom method is applied in
case the first method does not match, and just inserts the
concept itself.

(:method (develop_concept ?c)
((learnerProperty anxiety ?an)

(>= ?an 3))
((!insertElement ?c)

(explain ?c)
(examplify ?c)))

(:method (develop_concept ?c)
()
((!insertElement ?c)))

Figure 2: Two methods for developing a concept

4.3 Critical and Optional Tasks
Course generation has to distinguish between critical and
optional tasks. Critical tasks represent necessary elements
of the pedagogical strategy that have to be fulfilled for the
course generation not to fail. For instance, in a problem-
based approach it is mandatory to present a learning ob-
ject is of the typerealWorldProblem , hence the cor-
responding taskinsertProblem! is marked as criti-
cal (indicated by the suffix! ). In contrast, optional tasks
should be achieved if possible, but failing to do so will still
result in a course. As an example, the subtaskexplain of
the upper method in Figure 2 is optional, e.g., if there are
no learning object that can serve to explain conceptc the
concept will still be considered as developed.

4.4 Ideal and Fallback Methods
In practice, it is impossible to encode course generation
knowledge that covers every potential combination of in-
formation about the learner. Oversimplified, if a learner

(:method (selectAppropriateExercise ?c)
;; ideal method: if motivation is
;; high, then select exercise with
;; higher competency level.
(;; preconditions:

(learnerProperty field ?field)
(learnerProperty educationalLevel ?el)
(learnerProperty motivation ?m)

(>= ?m 3)
(learnerProperty competencyLevel ?c ?cl)
(try-all-assign ?exercise

(call GetElements
((class exercise)

(relation for ?c)
(property learningcontext ?el)
(property competencylevel (+ 1 ?cl))
(property field ?field)))))

(;; sub-task:
(insertElement ?exercise)))

(:method (selectAppropriateExercise ?c)
;; alternative method:
;; select exercise from any field
( (learnerProperty allowedEducLevel ?el)

(learnerProperty competencyLevel ?c ?cl)
(try-all-assign ?exercise

(call GetElements
((class exercise)

(relation for ?c)
(property learningcontext ?el)

(property competencylevel ?cl) ))))
((insertElement ?exercise)))

Figure 3: Selecting an exercise

model representsn different kinds of information withm
possible values each, then the number of possible combina-
tions isnm. Writing rules or methods for each case would
keep a lot of teachers busy for a long time.

Therefore, in LEACTIVEMATH, methods encode best
possible and alternative ways of selecting learning objects.
An ideal method typically takes a larger number of user
properties into account and poses a larger number of con-
straints on the learning object. As an example, consider the
methods in Figure 3. They encode the pedagogical knowl-
edge about exercise selection, and are called as a sub-task
of practice . The upper method checks whether the user
is highly motivated. Then, it searches for an exercise that
would be slightly too difficult under normal circumstances
(competency level plus 1). Additionally, the learning con-
text of exercise should correspond to the educational level
of the learner, and, similar, its field should correspond to
the field of the learner.

In case no ideal method is applicable,fallback methods
come into play. They encode the least constraining con-
ditions on the learning objects possible and serve to insert
elements in case no ideal method can be fulfilled. The bot-
tom method of Figure 3 matches if any exercise for concept
?c exists that is of the correct competency level and has a
learning context equal or lower as the educational level of
the learner.

4.5 The Output of Course Generation
The result of the planning is a sequence of learning objects
called course structure. Similar to theorganization



element of an IMS Content Package[IMS Global Learning
Consortium, 2003], it consists of nested sections with the
leaves being pointers to learning objects.

Because tasks represent a vast range of pedagogical
goals, the size of the generated courses ranges from a sin-
gle element to a complete curriculum. For instance, while
the taskteachConcept results in sequences of several
learning objects, other methods may select only a single
element. Frequently occurring examples are the methods
for exercise selection shown in Figure 3 and for example
selection, shown in Figure 4.

The example selection is additionally interesting because
of its differences to exercise selection. Examples serve to
increase motivation by presenting the application of a con-
cept. Therefore, the primary requirement is that the exem-
plary application is taken from the field of interest of the
learner, even in case its assigned competence level is higher
than the current competence level of the learner.

(:method (selectAppropriateExample ?c)
;; ideal method: if motivation is
;; low, select example with
;; matching field.
( (learnerProperty field ?field)

(learnerProperty educationalLevel ?el)
(learnerProperty motivation ?m)
(call < ?m 2)
(learnerProperty competencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)
(try-all-assign ?example

(call GetElements
((class example)

(relation for ?c)
(property learningcontext ?el)
(property competencylevel ?ex_cl)
(property field ?field)
))))

((insertElement ?example)))

(:method (selectAppropriateExample ?c)
;; fallback method: select example
;; from any competency level.
( (learnerProperty allowedEducLevel ?el)

(learnerProperty field ?field)
(try-all-assign ?example

(call GetElements
((class example)

(relation for ?c)
(property learningcontext ?el)

(property field ?field) ))))
((insertElement ?example)))

Figure 4: Selecting an example

4.6 Solutions to the Challenges of HTN Planning
In Section 3.1 we described the problem that traditional
AI planning requires evaluating a method’s preconditions
against the planner’s world state, which is practically im-
possible in case the learning objects are stored in one or
several databases. Therefore, we extended the HTN plan-
ner so that queries about learning objects in a method’s pre-
conditions result in a call to a mediator.

Mediators are well known services used in information
integration (for a recent overview on this topic, see[Doan
et al., 2004]). They act as links between the knowledge

processing and knowledge storing components, and offer a
uniform query interface to a multitude of autonomous data
sources. The LEACTIVEMATH mediator passes incoming
queries to the available databases and combines the results.

JShop2’s call command allows integrating exter-
nal function calls during planning. The function call
GetElements conditions (e.g., in Figure 4) queries
the mediator to search the repositories for elements that
fulfill the given conditions. try-all-assign ?p
?identifiers generates all bindings of?p to the el-
ements of the returned identifier list. Thereby subsequently
all possible values can be tried when backtracking.

Similarly, preconditions involving information about the
learner result in queries to the learner model. These queries
are encapsulated in a planning axiom as shown in Figure 5.
Axioms are used to infer preconditions not directly asserted
in the world state. In the figure, the result of the query
is bound to the variablevalue using the additional ax-
iom same. The axiomsame returnstrue in case both
provided parameters are instantiated and equal, and false
otherwise. If one parameter is uninstantiated, the axiom
assigns the value of the instantiated parameter to the unin-
stantiated parameter.

(:- (learnerProperty ?property ?value)
(same ?value (call queryLM ?property)))

Figure 5: Querying the learner model

The integration of learning services happens byservice-
addingmethods. These methods encode the pedagogical
knowledge at what time in the course the learner should use
a tool and insert calls to the tool at the appropriate place
in the course structure. Later, when the learner navigates
through the course, an invitation to use the service is pre-
sented to her. Checking for the availability of a service is
done by introducing an external function, too. Thereby a
method’s preconditions can test for the availability of a ser-
vice. In case the service is available, its call is inserted in
the course. Otherwise, an alternative method is applied.
This way, the pedagogical knowledge remains reusable, re-
gardless of the actual configuration of the learning environ-
ment.

(:method (assess)
;; if Siette is available,
;; then use it for assessment
((call ServiceAvailable Siette))
((!insertServiceCall Siette)))

(:method (assess)
;; fallback: insert some exercises
()
((insertText assessment)

(insertExercises 5)))

Figure 6: Integration of an assessment service

Figure 6 illustrates the integration of the assessment tool
Siette [Conejo et al., 2004]. The upper, ideal method
checks whether Siette is available and if so inserts a call
to the service in the course structure. In the fallback case,
the assessment will be simulated manually. A short text
is added in the course that describes that the following ex-
ercises will assess his knowledge, and five exercises are
inserted.



5 First Results and Conclusions

The results reported in this section focus on technical as-
pects. Evaluations regarding learning gains are underway
and will be reported at a later time.

We performed a first comparison between the old, expert
system based (EXSCG) and the new course generator (HT-
NCG). The tests and all necessary components (ACTIVE-
MATH server and a database) ran on a 2.8GH Intel Pentium
4 CPU with 2GB RAM. Both course generators repeatedly
generated an average length course about the mathematical
conceptderivation.

EXSCG showed a slightly slower performance for sin-
gle user course generation (average time of 23 and 20 sec-
onds). However, the EXSCG course generation did not ter-
minate in case of the simultaneous generation of more than
20 users. HTNCG slowed down, but still terminated (aver-
age of 2 minutes).

We suspect the differences to be caused by the on-
demand retrieval of the metadata. In EXSCG, the meta-
data of the complete content was loaded in the fact-based
of the expert system and then the rules were evaluated. In
HTNCG, only content relevant for the current plan was re-
trieved if necessary, i.e., when queried.

It is interesting that the new approach is faster even
though an additional indirect step via the mediator was in-
serted. In the future, we plan to extend the mediator with
caching possibilities. First of all, it can optimize queries
and secondly avoid queries over the Web.

An additional evaluation compared an XML-RPC based
connection and a direct connection between the mediator
and one of our database (based on Lucene[Foundation,
2003]). Because of the overhead of processing XML-RPC,
we expected the direct connection to outperform XML-
RPC. Surprisingly, the direct connection proved not to be
much faster. A possible cause may be the limited number
of queries (about 270). We plan to further investigate on
this topic.

However, a significant speed-up was achieved by using a
cached version of Lucene database. There, in case the very
same query is posed more than once, the result elements
were not retrieved from index but directly from memory.
Course generation for a single user decreased to the average
time of three seconds, which is about factor 7 faster than
compared to the non-cached version. The speedup holds
in case of 30 user planning, which took about 20 seconds.
This speedup is even more surprising in regard of the fact
that due the early stage of implementation the cache was
local to a single user, which means instead of one “global”
cache, the system used up to 30 “local” caches. We expect
the speedup to be caused mainly be the large amount of
similar queries, which occur even in a single course genera-
tion. For instance, if several examples for the same concept
are inserted in a course, a large number of the same queries
are processed.

In this paper, we described how HTN planning can
be used for representing and executing course generation
knowledge that is based on tasks and methods. Besides the
described advantages, we plan to use tasks to describe the
service offered by a course generator Web service. Addi-
tionally, they may be used for communication between user
and system, for instance by providing the user the possibil-
ity of executing tasks on demand with respect to a given
course and thereby intelligently extending the course. In-
vestigating these possibilities will be our next work.
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