
From Informal Learner to Active Content Provider: SLEAM approach

Oleg Rostanin German Research Center for Artificial Intelligence (DFKI) Kaiserslautern, Germany Markus Ludwar IBM Deutschland Entwicklung GmbH Böblingen, Germany

- Preparing of learning content has to become a part of the employees' daily job.
- The process of the content creation must take as little time as possible, i.e.:
- Tools for easy conversion of documents into RLOs are needed;
- Authoring process shall be embedded into the process of work.

Referenced approaches

Following authoring methods were analyzed:

Instructional System Design (ADDIE)

Rapid instructional design

Extract RLOs from the material
Annotate RLOs with metadata
Map RLOs to concept map (LCO)

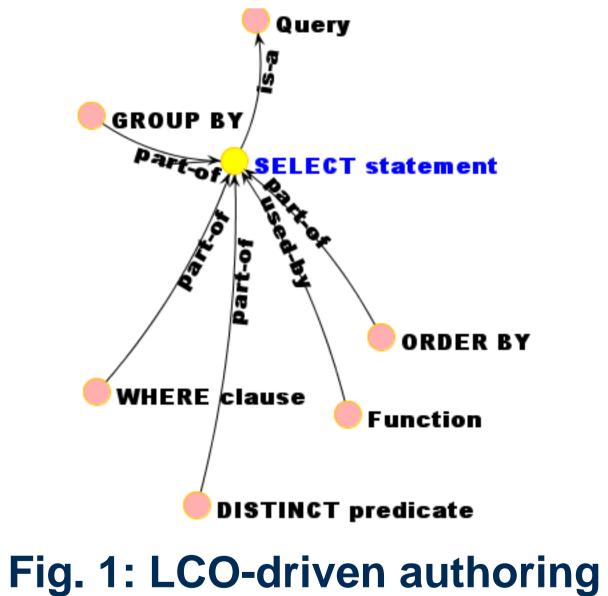
Fig. 2: SLEAM approach to authoring

Implementation: LOExtractor tool

Ē	jle	Help)												
	fg.	.0 N	aviç	jato	r	×	Tr	reeV	iew	[€	5	\bigtriangledown	, [
I	-		_ `				gen	nent	Cou	irse	в				
				.pro		ct									
				doc: los	5										
			Į,		PΝ	1 inl	tro								
				-		BS									
	ė	fg _t	5QL	COL	Irs	e fo	or d	lumn	nies						
				.pro	je	ct									
		<u>ا</u> …	_		s										
		.													
			l	C	SC	QL ir	ntro)							
					_								_		
	L 1	iter	ns s	elec	te	Ы									

Select Parser		
LO group name:	SQL intro	
- Select Parser:	Select Term or URL:	
💿 Wikipedia Parser	 Terms 	
🔘 Default Parser	OURLs	
Terms to extract:(sepa	rated by ;)	
SQL		1
		2
# ResultPages:	4	
Language:	English	
Source Folder:	/SQL course for dummies/los	Browse

- Embed the tool into working environment (e.g. implement browser plugin that allows to call LO-Extractor to parse the current web page)
- Evaluate approach and tool internally at DFKI Knowledge Management department
- Evaluate approach and tool at industrial partner


Conclusion

- SLEAM is an approach to workflow-embedded authoring
- Driven by learning concept ontology
- Oriented on creating RLOs instead of courses

- Rapid authoring tools
- Wiki/Blog authoring
- Concept-driven authoring

Learning concept ontology

Learning concept ontology is the central part of the proposed authoring process:

Fig. 3: Authoring projects

LON

<u>F</u>inish Cancel

tor 🍓 TreeView 🛛 💧 🟠 🗘 🖓 🖓 🗖 🗖	HTMLAreaView 🖾 TextAreaView TableArea	View ImageAreaView			-
 http://en.wikipedia.org/wiki/SQL SQL SQL SQL (IPA: [□□s□kju□□]) or IPA: [□si□kk The first version of SQL was developed at IB Originally designed as a declarative query an Originally designed as a declarative query an Common criticisms of SQL include a perceivec History Scope and extensions Language elements image 	 The FROM clause which indicates retrieved. The FROM clause can in another based on user-specified of The WHERE clause includes a comof rows returned by the query. The WHERE clause eliminates all rodoes not evaluate to True. The GROUP BY clause is used to elements of a smaller set of rows. 	nclude optional JOIN clau criteria. aparison predicate, which he WHERE clause is applie ows from the result set w combine, or group, rows . GROUP BY is often used	uses to join relate h is used to restric ed before the GRO where the compari s with related valu d in conjunction w	d tables to one of the number OUP BY clause ison predicate	
 The SQL language is sub-divided into sev Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi The example below demonstrates the 	 aggregate functions or to eliminate The HAVING clause includes a congroup BY clause is applied to the BY clause, aggregate functions cannot be called and in which order they should be called order of rows returned by a SOI ConceptView Are Metadataview X 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate re used to sort the cending or descen	of the GROUP e resulting data ding). The	a,
 Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi The example below demonstrates the SELECT books.title, count(*) AS Auth 	 The HAVING clause includes a congroup BY clause is applied to the BY clause, aggregate functions can be order of the BY clause is used to and in which order they should be order of rows returned by a SOI ConceptView RetadataView X 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate re used to sort the cending or descen	of the GROUP e resulting data ding). The	a, ic
 Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi SELECT * DFROM books WHERE pi The example below demonstrates the SELECT books.title, count(*) AS Auth Example output might resemble the f 	The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title:	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate. re used to sort the cending or descen	of the GROUP e resulting data ding). The	a, ic
Statements which may have a persistent Queries SQL queries allow the user to specify SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t SELECT * DFROM books WHERE pi SELECT * DFROM books WHERE pi SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth Title Authors D	The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to it and in which order they should be order of rows returned by a SOL ConceptView MetadataView X Title: Publisher: rostanin	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate. re used to sort the cending or descen ed unless an ORD Assigned concepts Concept where clause	of the GROUP e resulting data ding). The FD BY clause in Confidence 0.34375	a, ic
 Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi SELECT * DFROM books WHERE pi The example below demonstrates the SELECT books.title, count(*) AS Auth Example output might resemble the f 	The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title:	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate. re used to sort the cending or descen <u>bed unless an OPD</u> Assigned concepts Concept where clause query	of the GROUP e resulting data ding). The <u>FP_BV_clause</u> Confidence 0.34375 0.4375	a, ie
 Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi SELECT * DFROM books WHERE pi SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth Example output might resemble the f Title Authors	The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to it and in which order they should be order of rows returned by a SOL ConceptView MetadataView X Title: Publisher: rostanin	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results of clause predicate. re used to sort the cending or descen red unless an OPD Assigned concepts Concept where clause query group by	of the GROUP e resulting data ding). The <u>FD_BV clause</u> Confidence 0.34375 0.4375 0.296875	a, ;e
Statements which may have a persistent Queries SQL queries allow the user to specify SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t SELECT * DFROM books DWHERE pi SELECT * DFROM books DWHERE pi SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT the underscore character "_" is ofte Under the precondition that isbn is th SELECT title, count(*) AS Authors DF However, many vendors either don't	The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title: Publisher: rostanin Type: any	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results clause predicate. re used to sort the cending or descen <u>bed unless an OPD</u> Assigned concepts Concept where clause query	of the GROUP e resulting data ding). The <u>FP_BV_clause</u> Confidence 0.34375 0.4375	a, ic
Statements which may have a persistent Queries SQL queries allow the user to specify SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t SELECT * DFROM books DWHERE pi SELECT * DFROM books DWHERE pi SELECT books.title, count(*) AS Auth SELECT title, count(*) AS Auth SELECT title, count(*) AS Authors DF However, many vendors either don't Data retrieval is very often combinec	 The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title: Publisher: rostanin Type: any 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results of clause predicate. re used to sort the cending or descen bed unless an ORD Assigned concepts Concept where clause query group by concept	of the GROUP e resulting data iding). The ED BY clause in Confidence 0.34375 0.4375 0.296875 1.0	a, ic
Statements which may have a persistent Queries SQL queries allow the user to specify SQL queries allow the user to specify SQL queries allow the user to specify The DFROM clause which indicates t SELECT * DFROM books DWHERE pi SELECT * DFROM books DWHERE pi SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT the underscore character "_" is ofte Under the precondition that isbn is th SELECT title, count(*) AS Authors DF However, many vendors either don't	 The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title: Publisher: rostanin Type: any Presentation: embedded Level: any 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results of clause predicate. re used to sort the cending or descen ed unless an OPD Assigned concepts Concept where clause query group by concept group by	of the GROUP e resulting data iding). The ED BY clause in Confidence 0.34375 0.4375 0.296875 1.0 0.296875	a, ;c
Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books WHERE pi SELECT the example below demonstrates the SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth Example output might resemble the f Title Authors (The underscore character "_" is ofte Under the precondition that isbn is th SELECT title, count(*) AS Authors F However, many vendors either don't Data retrieval is very often combinec SELECT isbn, title, price, price * 0.06	 The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title: Publisher: rostanin Type: any 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	to eliminate rows cts on the results of clause predicate. re used to sort the cending or descen bed unless an ODD Assigned concepts Query group by concept group by	of the GROUP e resulting data ding). The ED BY clause is 0.34375 0.4375 0.296875 1.0 0.296875	
Statements which may have a persistent Queries The most common operation in SQL d SQL queries allow the user to specify The DFROM clause which indicates t The following is an example of a DSE SELECT * DFROM books DWHERE pi SELECT * DFROM books DWHERE pi SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth Comments the SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT books.title, count(*) AS Auth SELECT title Authors	 The HAVING clause includes a co GROUP BY clause is applied to th BY clause, aggregate functions ca The ORDER BY clause is used to a and in which order they should be order of rows returned by a SOI ConceptView MetadataView X Title: Publisher: rostanin Type: any 	mparison predicate used te result set. Because it a in be used in the HAVING identify which columns a e sorted (options are asc	I to eliminate rows cts on the results of clause predicate. re used to sort the cending or descended and unless an OPDI Assigned concepts Concept where clause query group by concept group by concept group by concept keyword	of the GROUP e resulting data iding). The ED BY clause in Confidence 0.34375 0.4375 0.296875 1.0 0.296875	

Fig. 5: LO extraction, annotation and mapping

- LOXExtractor is a rapid authoring tool supporting the SLEAM approach.
- It allows extracting reusable
 RLOs from existing documents
 and web pages
- It is tuned to extract RLOs from
 Wikimedia web pages (e.g. Wi kipedia, Wikibooks)
- Extracted RLOs are mapped to the learning concept ontology in order to increase the precision of the just-in-time information delivery in workflows
- Several RLOs explaining the same concepts from LCO can be created that allows adaptive delivery of learning content depending on user profile and prefe-

rences

