
Designing a Federated Multimedia Information
System on the Semantic Web

Richard Vdovjak, Peter Barna, and Geert-Jan Houben

Eindhoven University of Technology,
POBox 513, 5600 MB Eindhoven,

The Netherlands
{r.vdovjak, p.barna, g.j.houben}@tue.nl

Abstract. A federated Web-based multimedia information system on
one hand gathers its data from various Web sources, on the other hand
offers the end-user a rich semantics describing its content and a user-
friendly environment for expressing queries over its data. There are three
essential ingredients to successfully deploy such a system. First, one needs
a design methodology identifying different design phases and their un-
derlying models which serve as a framework for the designer. Second,
there must be a set of tools that are able to execute the design, i.e. they
serve as the back-end of the information system instantiating the models
with data coming from various Web sources. Third, there also must be
an entry point for the end-user, where he is able to explore what the sys-
tem can do for him and where he can formulate his queries. This paper
is a follow-up of our previous work describing the Hera design methodol-
ogy and contributes to all three issues above. In particular, it refines the
existing methodology by presenting an explicit RDFS-based integration
model and explains how the mediator uses this model to obtain query
results. The issue of a user-friendly front-end is addressed by introducing
our interface for browsing and querying RDFS-based ontologies.

1 Introduction

Designing a Web-based federated information system (IS) that deals with mul-
timedia items requires the consideration of both the IS back-end that integrates
various Web sources, and the IS front-end that serves as an entry point for the
user query. If this query is issued not only against text-like data but also against
multimedia data, the semantic issues become crucial. Consider for instance the
following user query: “Give me all pictures of Niagara Falls taken from the Falls
Avenue in Niagara Falls, Canada with a telelens”. The first part of the query
denotes the subject (waterfalls) being photographed. The second identifies the
position of the photographer. Note the ambiguity of the ”Niagara Falls” colloca-
tion, first denoting the waterfalls, and then being a part of the position descrip-
tion as a town name. Moreover, there is the third part of the query, imposing
an additional lens constraint which basically says that we are only interested in
those images that provide enough details and a narrow perspective achievable

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 357–373, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



358 R. Vdovjak, P. Barna, and G.-J. Houben

only by using a lens of that focal length. It is evident that queries of this kind
are not likely to be satisfactorily answered by keyword based search engines. By
translating this query into a set of keywords and trying a keyword based search
engine we either obtained an empty set of results (e.g. Google Image Search)
or a countless number of irrelevant pictures featuring big photo lenses (e.g. Al-
taVista Image Search retrieved over 1.4 million images and the top scored ones
were indeed mostly showing long lenses and other photo equipment). Examples
like this show a clear need for something more powerful than keywords. The use
of ontologies, taxonomies of classes within a certain domain linked by proper-
ties indicating different relations among those classes, would enable to enhance
queries and improve both the precision and the recall. Ontologies are becoming
the essence of Web portals offering integrated views over various domains.

There are three important ingredients to successfully deploy such systems.
First, one needs a design methodology identifying different design phases and
their underlying models/ontologies which serve as a framework for the designer.
Second, there must be a set of tools that are able to execute the design, instanti-
ating the models with data coming from various Web sources. Third, there also
must be an entry point for the end-user, where he is able to explore what the
system can do for him and where he can formulate his queries. This paper is a
follow-up of our previous work describing the Hera design methodology [1] and
[2]. It contributes to all three issues above. In particular, it refines the existing
methodology by presenting an explicit RDFS-based integration model, and ex-
plains how the mediator uses this model to obtain query results. The issue of
a user-friendly front-end is addressed by introducing our interface for browsing
and querying RDFS-based ontologies. A design of a Web-based photo portal is
used as our case example for illustrating our ideas.

2 Hera Methodology

A primary focus of the Hera project is to support Web-based information system
(WIS) design and implementation. A WIS generates a hypermedia presentation
for data that in response to a user query is retrieved from the data storage. This
entire process of retrieving data and presenting it in hypermedia format needs
to be specified during the design of the WIS.

The typical structure of the WIS design in the Hera perspective consists of
three layers:

– Semantic Layer: defines the content that is managed in the WIS in terms
of a conceptual model; this layer includes the definition of the process of
integration needed to gather the data from different sources; if the data is
made available from outside the WIS, a search agent or information retrieval
engine could be the interface to the WIS.

– Application Layer: defines the abstract hypermedia (navigation) view on the
data in terms of an application model, which represents the structure shown
to the user in the hypermedia presentation; this layer includes the definition



Designing a Federated Multimedia Information System on the Semantic Web 359

of the adaptation in the hypermedia generation, e.g. based on a user model
and user/platform profile.

– Presentation Layer: defines those details that together with the definitions
from the Application Layer are needed to generate a presentation for a con-
crete browsing platform, e.g. HTML, WML or SMIL.

In this paper we focus mainly on the integration and data retrieval process
of the Hera methodology. This combined phase helps to make the data available
from different sources, such that in response to a user query a conceptual model
instance is generated that contains the data for which the application is going
to generate a presentation: see Figure 11.

The integration is in principle performed before querying, as opposed to
the retrieval and presentation generation that are performed for every query.
It represents the data stored and therefore uses an integration model to map
the data from the different sources into concepts of the conceptual model. From
a mapping at schema (ontology) level a mapping at instance level is derived.
This mapping is needed whenever for a given query the instances that compose
the query result are to be retrieved. These instances need to be extracted by the
mediator from the different source ontology instances. The role of the integration
is to make these source ontology instances available(on-demand).

The data retrieval handles the reception of the user query, and in response
produces a conceptual model instance for the query result. It starts with the
translation of the query formulated by the user into a query that can act as a
retrieval request on the data stored. This translation takes into account that
while the user is allowed to formulate a query by mentioning items from the
conceptual model or application model, the application model defines exactly
which concepts need to be retrieved in connection with the items mentioned: this
is known as query extension. Subsequently, using the query engine, the mediator
retrieves the data from the sources and provides the query result. Finally, this
query result needs to be transformed into the conceptual model instance that is
passed on to the phase of presentation generation2 .

2.1 Related Work

Most of the web engineering approaches (e.g. UWE [3] or XWMF [4]) do not
explicitly consider integration and neither the user support for the query gen-
eration process, as opposed to what is the case in Hera. Given its RDF-based
nature we address XWMF here in more detail. The eXtensible Web Modeling
Framework (XWMF) [4] consists of an extensible set of RDF schemas and de-
scriptions to model web applications. The core of the framework is the Web
Object Composition Model (WOCM), a formal object-oriented language used
1 The ellipses denote the transformations (in XSLT or Java) and the rectangles denote
models or data. The shapes in grey denote application-independent items, the shapes
with bold lines are query independent, while the others are query-dependent items.

2 Details of this phase are beyond the scope of the paper, interested reader is referred
to [2].



360 R. Vdovjak, P. Barna, and G.-J. Houben

to define the structure and content of a web application. WOCM is a directed
acyclic graph with complexons as nodes and simplexons as leaves. Complexons
define the application’s structure while simplexons define the application’s con-
tent. Simplexons are refined using the subclassing mechanism in different vari-
ants corresponding to different implementation platforms. While Hera provides
both a modeling framework and a methodology for developing web applications,
XWMF appears to be only a modeling framework.

instance
(rdf)

source ontology

(rdfs)
conceptual model

conceptual model
instance
(rdf)

Query dependent

Application independent

Application dependent

(rdf)

source ontology

integration model

(rdfs)
ontology

integration model
specialization

query extension

(rdfs)

extended query
(rql)

query
(rql)

is extended by

is used by is used by is used by

is used by

has instance

(java)

query result
(java)

result extension

instance
(rdf)

134

(rdf)

integration model

has instance

is used by

2

is used by

5

6 7

(java)

(java)

RQL engine

mediator

Fig. 1. Integration and data retrieval

3 RDF, RDFS, RQL and Their Role in Hera

The Resource Description Framework (RDF) [5] is a general-purpose data lan-
guage issued as a W3C standard. An RDF model consists of resources, named
properties, and property values. RDF Schema (RDFS) [6], an extension to RDF
which is itself expressed in RDF terms, provides a support for creating vocabu-
laries at the type (schema) level. RDFS defines a modeling language by assigning



Designing a Federated Multimedia Information System on the Semantic Web 361

a special semantics to several (system) resources and properties amongst which
rdfs:Class, rdfs:Property, rdfs:subClassOf, rdfs:subPropertyOf.

In Hera, RDF(S) is the main format used for the different models in the design
phases. One of the reasons for choosing RDF(S) is that it is flexible (supporting
schema refinement and description enrichment) and extensible (allowing the def-
inition of new resources/properties) Moreover, it is coming with the promise of
web application interoperability. Hera model instances are represented in plain
RDF validated against their associated models (schemas) represented in RDFS.

Since RDF(S) is used as our vehicle for capturing semantics of different do-
mains within the IS being designed, we also need a query language that would
enable us to retrieve the information of interest from these knowledge bases. The
most advanced RDF(S) query language to date is RQL [7]. It covers both queries
over RDF schemas and RDF instances. RQL queries that we will consider con-
sist, similarly to SQL quires, of SELECT-FROM-WHERE clauses. The SELECT clause
specifies resources (variables) which are of interest. The FROM part is the core of
the query and specifies one or more path expressions (i.e. subgraphs of the entire
schema graph) where the variables are being bound. Finally, the WHERE clause
contains filtering conditions that are being applied on the variables bound in the
FROM statement.

SELECT PHOTO
FROM {PHOTO:GeoPhoto}depictsTheme{THEME:Universe},

{PHOTO}takenFromPlace{PLACE:AddressablePlace}.country{COUNTRY},
{PLACE}town{TOWN},{PLACE}street{STREET},
{PHOTO}takenWithSettings.usedLens{LENS:TeleLens}

WHERE THEME like "*Niagara Falls" and
COUNTRY like "Can*" and
TOWN like "Niagara*" and
STREET like "Falls Av*"

Fig. 2. User query in RQL

Despite its relative intuitiveness, RQL is still too low-level for an average
end-user who wants to formulate queries over RDFS-based ontologies. It would
be unreasonable to expect the end-user to type in a query like the one depicted
in Figure 2, which is the RQL syntax of the “Niagara picture request” presented
in the introduction. We address this issue later in section 5.2 by introducing
our visual interface that enables the user to generate such RQL queries in a
point-and-click manner.

RQL in combination with its java-based interpreter called Sesame [8] proved
to be useful when building our retrieval engine, which in fact acts (with some
limitations) as a distributed RQL query engine.



362 R. Vdovjak, P. Barna, and G.-J. Houben

4 Integration and Data Retrieval

The main task of this design phase is to connect the application’s conceptual
model with several autonomous sources by creating channels through which the
data will populate on request the concepts from the conceptual model. This
involves identifying the right concepts occurring in the source ontologies and
relating them to their counterparts in the conceptual model. Note that as op-
posed to classical database schema integration we do not aim at integrating all
source concepts, but rather select only those that are relevant with respect to
the defined conceptual model.

Fig. 3. Conceptual model

4.1 Conceptual Model

The conceptual model (CM) provides a uniform semantic view over multiple
data sources. The CM serves as an interface between data retrieval and presen-
tation generation. The CM is composed of concepts and concept properties that
together define the domain ontology. There are two types of concept properties:
concept attributes which associate media items to the concepts and concept
relationships that define associations between concepts.

The running example used throughout the paper describes the design of a
federated multimedia information system (MIS) implementing a photo library
portal that allows the user to create on-the-fly photo exhibitions (browseable
presentations of images of interest), study the photo technique behind these
images and help him to rent or buy the necessary photo equipment in order to
be able to achieve similar results.

The data is assembled on demand, based on the visitor’s query, from the pho-
tos coming from different (online) photostock agencies, annotated with relevant



Designing a Federated Multimedia Information System on the Semantic Web 363

descriptions. The photo equipment data is gathered from (online) catalogues and
matched with (online) photo rental offers. All this data is accessible from a single
entry point, semantically represented by the CM. Figure 3 presents an excerpt
of this CM which is composed of several sub-ontologies covering the semantics
of different sub-domains:

– The photo sub-ontology consists of terms coming from the photo domain.
It describes things like different kinds of Light, various photo Techniques,
different camera Settings etc. The cornerstone of this ontology is the class
Photo which is linked by its properties with the aforementioned classes.
There is also a property called depictsTheme that connects the Photo class
from the photo ontology with the Entity class from the general ontology.

– The equipment sub-ontology focuses on the photo hardware, describing and
classifying different kinds of lenses, cameras and other related accessories.

– The general sub-ontology consists of all terms one can possible take a picture
of, the most general term being the Entity class.

– The ternary sub-ontology serves as a means to describe a story captured on
the photograph, where there are two or more actors that perform (either
send or receive) an action. For instance a photo depicting a man biting a
dog is certainly a different story than that depicting a dog biting a man.

Fig. 4. Integrated sources: Photo Equipment Catalogue, Photo Equipment Rental

4.2 Sources

In our previous research [1] [9] we discussed how to overcome the syntactic het-
erogeneity of different source formats by introducing a layered approach starting
with a layer of wrappers. In this paper we focus on the issues regarding the
semantic heterogeneity. We consider for integration only those sources that are
capable of exporting their schema in an RDFS based ontology and their data
upon request (an RQL query) in RDF. In other words, we assume that each
source offers its data on the Semantic Web platform providing RQL query ser-
vices.



364 R. Vdovjak, P. Barna, and G.-J. Houben

It is often the case on the Web that the information is duplicated and offered
(possibly with a different flavor) from several sources. We group such sources into
semantically close clusters and provide a means to order them dynamically within
a cluster, based on several notions of quality introduced by the designer. Sources
within a cluster do not necessarily have the same structure but should provide
approximately the same semantic content. Sometimes for the sake of simplicity
we abuse the word source when in fact we mean a whole cluster represented by
that source.

As already mentioned, the data in our photo portal is coming from three
sources/clusters: an online photo catalogue, rental offers, and online photostock
agenicies. The abbreviated ontologies describing schemas of the first two clusters
are depicted in Figure 4. The third kind of sources describing photostock agencies
is omitted due to space limitations and we will consider it hereafter identical with
the relevant parts of the CM.

The photo catalogue source (Figure 4 cluster 1) captures specifications of
two sorts of catalogue items: lenses and cameras together with their respective
subclasses. A seemingly similar class hierarchy featuring lenses and camera bod-
ies exists also in the second source representing rental offers (Figure 4 cluster
2). There is, however, a considerable semantic gap between the two sources. The
first source considers lenses or cameras as models, i.e. a virtual set of features
and specifications. The second source refers to lenses and cameras as physical
entities, i.e. concrete lenses and cameras (including their serial number) that are
available for renting.

Suppose that the user, after reading details about a nice picture, decides
to take similar pictures and he wants to rent the necessary photo equipment.
When renting a lens from one source and a camera body from another source
(remember there are more sources in one cluster) one must assure that the
lens and the camera are compatible. In other words, that they share the same
mount specification. As this information is not available in the rental offers the
system has to look it up in the photo catalogue. In the following we present the
integration model which helps to resolve such issues.

4.3 Integration Model

The integration model (IM) addresses the problem of relating concepts form
the source ontologies to those from the CM. This problem can also be seen as
the problem of merging or aligning ontologies. The approaches to automate the
solution to this problem are usually based on lexical matches, relying mostly
on dictionaries to determine synonyms and hyponyms; this is however often not
enough to yield good results. Even when the structure of ontologies is taken
into account the results are often not satisfactory especially in the case of un-
coordinated development of ontologies across the Web [10]. For this reason and
for the fact that every mistake in the integration phase will propagate and get
magnified in all the subsequent phases, we currently rely on the designer or a
domain expert to articulate CM concepts in the semantic language of sources.



Designing a Federated Multimedia Information System on the Semantic Web 365

What we offer the designer, is an integration ontology by the instantiation of
which he specifies the links between the CM and the sources.

Integration Model
Specialization

Integration
Model Ontology

Reliability

ResponseTime

Decoration

source

Articulation To

Fromvalue

Literal

com
pare

Comparator

PathExpression

starts

Node

rdfs:Resource

Edge

rdf:Property

begins

ends

starts ToNode

starts FromNode

PrimaryNode

ProcInstruction

Transformer

Literal2String

Sn2UriTrans

xy property "xy"
subPropertyOf
subClassOf

backtrack

follow

target

applies

obtainedFrom

producedBy

id
ByU

RI

srcAddress

idByValue

Literal

Fig. 5. Integration model ontology and its specialization

Integration Model Ontology. The integration model ontology (IMO) de-
picted in Figure 5 is a meta-ontology3 describing integration primitives that
are used both for ranking the sources within a cluster and for specifying links
between them and the CM. The IMO is expressed in RDFS allowing the de-
signer to tailor it for a particular application. The main concepts in the IMO
are Decoration and Articulation.

Decorations. Decorations serve as a means to label “appropriateness” of differ-
ent sources (and their concepts) grouped within one semantically close cluster.
By having a literal property value they offer a simple way of ranking otherwise
equivalent sources from several different points of view. There are some general
decoration classes that are predefined in the framework (e.g. ResponseTime).
3 IMO is a meta-ontology in the sense that its instances are dealing with concepts
from other ontologies (source ontologies and the CM).



366 R. Vdovjak, P. Barna, and G.-J. Houben

However, which ordering criteria are of interest depends mostly on the applica-
tion. That is why the concept of Decoration is meant to be extended (special-
ized) by the designer. In this way we allow the designer to capture in the IM his
(mostly background) knowledge regarding the sources.

For instance in our photo portal we example sources in the Cluster 2 are
graded based on the reliability of the equipment they offer for rent. Hence the
Reliability decoration is introduced as shown in Figure 5 bottom.

The idea behind decorations is to capture the “reputation” of sources in
different areas. By making this explicit, the mediator which is responsible for
evaluation of queries can consult the relevant sources in the optimal way w.r.t.
the chosen ordering criterion.

Articulations. Articulations describe actual links between the CM and the
source ontologies and clarify also the notion of the concept’s uniqueness which
is necessary to perform joins from several sources.

Before we explain the concept of Articulation (see Figure 5) we need to
introduce the notion of a path expression. A path expression is a chain of concepts
(represented by the class Node) connected by their properties (represented by
the class Edge). If the property has the given node as its domain (in other words
we follow the arrow in the RDF graph) we connect them with the follow meta-
property. If the property has the given node as its range (going against the arrow
in the graph), we connect the two by the backtrack meta-property. This allows
us to define inverse relationships even in the case when they are not present in
the source ontologies.

Each path expression starts with a link to PrimaryNode which is a special
node that can be uniquely identified either by a URI (idByURI) or by value
(idByValue). The first points to a resource whose URI serves as an ID, the
second points to a property (the Edge type) the value4 of which serves as an ID.

In our example we chose to identify source concepts with identification-by-
value due to the simpler way of deciding whether two resources describe the
same thing. In the case of URI identification the decision whether two URIs
refer to the same real-life object would require some sort of a web institution
that normalizes several URIs to a canonical URI. This is in our opinion rather
restrictive and a value-based identification is likely to work better when looking
at the data coming from the Web source. The only exception where we chose to
use idByURI is the local (mediator’s) CM instance of the Equipment concept;
this URI is generated from the pr:serialNumber.

An articulation contains two path expressions: the target path expression To
pointing into the CM and the path expression called From pointing to a source
(note the srcAddress property, value of which is the source URL). The target
path expression contains nodes of type ToNode5 that extends the Node with two

4 By a value of a property we mean the object in RDF terminology.
5 The ToEdge property is defined in a similar way but was omitted in order to simplify
the figure.



Designing a Federated Multimedia Information System on the Semantic Web 367

properties: obtainedFrom and producedBy. The first links this node to its coun-
terpart in the From path expression, the second points to a converting processing
instruction called Transformer, which is called by the mediator to transform the
source into the target. Processing instructions are resources containing a piece
of Java code, an XSLT transformation, an RQL query or a combination of those.
They are used by the mediator for changing and comparing values. Some general
processing instructions are provided by the framework (e.g. the Literal2String
transformer); those that are application-dependent are introduced in the special-
ization of IMO by the designer (e.g. the Sn2UriTrans transformer).

d2_1 value

a1_2

0.5

pe_to2

pe_from2

starts cm:LensModel

pc:Lens

follow cm:requiredLensMount

pc:mountType

endsL

d3_1 0.9

a2_1

value

pe_to3

pe_from3

starts cm:TeleLens

pr:LongLens

pr:serialNumber

idByUri

transfomedBy

obtainedFrom

source

target

target

source

startsapplies

applies

obtainedFrom

starts

srcAddress

http://www...PhotoRental

srcAddress

http://www...PhotoCatalog

Literal

follow

endsL Literal

obtainedFrom

pc:lensModel
idByValue

cm:modelLabelidByValue

d1_1 0.5

a1_1

value

pe_to1

pe_from1

starts cm:LensModel

pr:Lens

follow

follow

cm:modelLabel

pr:lensModel

endsL

endsL Literal

idByValue

         idByValue

applies

obtainedFromobtainedFrom
target

source starts

srcAddress

http://www...PhotoRental

Literal

idByValue

Sn2UriTransf

cm:specOfModel

follow

follow pr:lensModel

follow cm:modelLabel

pr:serialNumber

obtainedFrom

Fig. 6. Articulations, integration model instance

4.4 Integration Model Instance

The integration model instance is produced by the designer by instantiating the
IMO6. Even though it is an ontology instance, it deals with the sources and the
CM at the schema level, i.e. it makes statements about their concepts, not about
instances. The choice of using RDF(S) as our underlying format proved to be
6 Currently we are involved in building tools that allow the designer to specify the
links and generate the articulations in the RDF(S) format automatically.



368 R. Vdovjak, P. Barna, and G.-J. Houben

very useful since it is easy in its distributed fashion to make statements about
other resources. Figure 6 shows three articulation examples.

The first is a simple articulation linking the cm:LensModel and its prop-
erty cm:modelLabel with their counterparts from the photo rental source. The
prime nodes are defined by the value of the properties: cm:modelLabel and
pr:serialNumber.

The second articulation defines the lens property cm:requiredLensMount
by linking it to the property pc:mountType from the catalogue source. Note the
match between the identifying properties both referring to the model label.

The third articulation maps the concept cm:TeleLens into its counterpart
pr:LongLens from the photo rental source. Note that these articulations were
simplified in the sense that the links to the processing instructions (i.e. trans-
formers that transform source values into the target values) are mostly omitted.

4.5 Data Retrieval

While the integration phase (instantiating the IM) is performed only once, prior
to the user asking the query, the data retrieval phase is performed for every
query. In this phase, the query is split into several sub-queries which are then
routed to the appropriate sources. Subsequently, the results are gathered and
transformed into a CM instance. Figure 1 shows the dataflow of this phase with
three processing blocks involved: the query extension, the mediator, and the
result extension.

Query Extension. As already mentioned the query language used in our sys-
tem is RQL [7]. In this sub-phase the RQL user query, an example of which is
depicted in Figure 2, is extended to contain all relevant data which is used by
the presentation generation engine[2]. Note that in order to create a hypermedia
presentation containing also links to relevant information that was not explicitly
mentioned in the user query we must extend this query. The extension algorithm
traverses the CM from a given concept(s) (PHOTO: GeoPhoto) and adds all con-
cepts and/or literal types that can be reached by following property edges in the
CM graph.

Mediator. The mediator is responsible for finding the answer to the query
by consulting the available sources based on the integration model instance. As
shown in Figure 1 the mediator takes the extended query as its input. Then it
proceeds as follows: for every variable occurring in the select clause of this query
it locates an articulation(s) which contains this variable. From this articulation
the mediator determines the name of the concept occurring in the source and
also the way how to obtain that concept, i.e. the necessary transformer(s) for
the concept values, the address of the source, and the path expression to the
concept of interest within the source schema. This path expression can be seen
as a query executed on a particular source. Hence, consulting articulations in the
IM instance in fact means query unfolding as it is known in the GAV approach.



Designing a Federated Multimedia Information System on the Semantic Web 369

The acknowledged disadvantage of the GAV approach is that in principle it
requires changing the definition of the global schema (in our case the CM) each
time a new source is added. This is however clearly not the case in our framework,
since the only thing which changes when a new source is added or removed is the
IM instance (new articulations are added or removed). From this point of view,
we keep the CM independent from the sources, similarly to the LAV approach.
Details concerning these approaches are beyond the scope of the paper, for details
see [11]. If there are more articulations found for a given variable, that means
there are several competing sources offering values for this variable. In this case
the decorations attached to each articulation are used to decide the order in
which the sources will be consulted.

After the sources are consulted, i.e. appropriate RQL queries are routed to
them, the mediator waits for the response. Subsequently, it collects the results
and assembles them into an answer which consists of a collection of tuples (in
RDF terminology a bag of lists).

Result Extension. The answer provided by the mediator is a valid response
to the RQL query that was asked, however it is not yet a CM instance. The
result extension module transforms the “flat” collection of tuples by adding the
appropriate properties into a valid RDF graph which adheres to the CM. This
(query-dependent) CM instance serves as a basis for the presentation generation
phase.

5 Hera Front-End

In the above sections we discussed how to design a data retrieval back-end for a
multimedia information system. Here we focus on the front-end, the part of the
system that interacts with the end-user. To bring an existing MIS to the end-
user, two prerequisites are essential. Firstly, the users have to become familiar
with the structure of the CM, i.e. to explore the ontology that captures the
semantics of the MIS. Secondly, the system should help the users in generating
the queries over this ontology, and visualize the results.

5.1 Visualizing the CM

As already mentioned, the CM is expressed in RDF(S). The problem of visu-
alizing RDF(S) lies in the fact that it is difficult to show the whole expressive
power of RDF(S) and at the same time to keep the user interface (UI) still
comprehensible, easy to use, browse and navigate.

The two main approaches currently used: the tree-based approachand the
graph-based approach, do not in our opinion address the above issues completely.
The tree metaphor, though very familiar as UI, does not help the user in grasping
other concept relationships than that used to construct the tree structure (most
of the time being the rdfs:subClassOf relationship). The graph metaphor, on
the other hand, displays all concept relationships but as a result introduces the



370 R. Vdovjak, P. Barna, and G.-J. Houben

Fig. 7. The EROS interface: Class-centric view, Property-centric view

full complexity of a directed labeled graph in which is very difficult to spot the
hierarchical structure of the ontology ”hidden” behind the special edges and not
reflected by the position of the class nodes.

Combining the advantages of the two mentioned UI metaphors, one would
desire the simplicity of a browsable tree and at least a part of the expressiveness
of the graph based approach. This is exactly what we tried to achieve by the
EROS7 interface.

5.2 The EROS Interface

The main idea behind this interface is to consider properties as partial mappings
that map (some) elements (classes) from the class hierarchy into other (possibly
identical) elements within the same hierarchy. Note that the set of all elements
from the hierarchy serves two purposes: firstly as a (potential) domain of all
properties and later as their (potential) range. This double purpose inspired
us to have two (almost) identical hierarchy trees in our interface, the left tree
being the domain (“from”) tree, and the right tree being the range (“to”) tree.
Properties themselves are depicted as arrows connecting the classes from the
left / domain tree with the classes from the right / range tree. Note that this
approach makes it possible to display for a certain property at the same time
both the context (the neighboring class hierarchy) of the domain class and the
context of the range class. Cases of multiple inheritance are handled by displaying
a list of super classes for the currently selected class. This approach, illustrated
in Figure 7(left) can be considered as “class-centric” since the key transitive
property on which both trees are built is the subClassOf relation.

As already mentioned in section 3 properties in RDF(S) are first-order cit-
izens. So, if the user prefers to view the ontology with the “property-centric
7 Explorer for Rdfs-based OntologieS



Designing a Federated Multimedia Information System on the Semantic Web 371

optics” and desires to explore the tree hierarchy based on the relation subProp-
ertyOf the EROS interface can easily accommodate this demand by imposing
that the left tree hierarchy is built based on the subPropertyOf relation and the
right tree (still hierarchically based on subClassOf ) represents the domains and
ranges of the properties from the left tree as depicted in Figure 7(right).

Fig. 8. The EROS interface: Query Building Mode

5.3 Query Generation Support

When in query mode, the EROS interface, guides the user in building RQL
queries, i.e. specifying the SELECT-FROM-WHERE clauses. As the most tricky clause
to build is the FROM part, the EROS interface starts by assisting the user in the
formulation of a single path expression of the form: {V ARi : DCi}pi{V ARj :
RCj | L}, . . . This expression can be combined in a so-called chained expression
which takes the following form: {V ARi : DCi}pi{V ARj : RCj | L}.pj{V ARm :
RCm | L} . . . Where V ARx : Y denotes that a variable of type Y , px repre-
sents a property, DCi and RCj denote classes serving as a domain and range
respectively; L represents a literal.

EROS allows the user to generate such expressions by selecting a node in the
graph (a variable of a certain type), then selecting a property (pI) of the chosen
node that navigates the user to the destination node (again a variable). If the
destination node is not of a literal type, the user can choose another property of
that node traversing the graph further (building a chained path expression) or
he can create a new path expression concatenating it with the previous ones.

Filling in the SELECT clause consists of choosing variables that are of interest
from the list of variables introduced in the FROM clause. Similarly to the SELECT
clause, the WHERE clause starts by selecting variables bound in the FROM clause



372 R. Vdovjak, P. Barna, and G.-J. Houben

Fig. 9. The Resulting Hypermedia Presentation

and then building a Boolean expression by utilizing an offered list of appropriate
operators. The queries that can be built in this way represent a large class of
practical queries for ontology exploration and data retrieval as illustrated in
Figure 2. However, we acknowledge that we do not cover the complete expressive
power of RQL (e.g. nested queries nor implicit schema queries are not supported).
Figure 8 depicts the query building part of the EROS interface. Note that the
built query is that presented in Figure 2 and after its execution, the Hera system
offers the query results in the form of a multimedia presentation depicted in
Figure 9.

6 Conclusions and Future Work

As the nature of applications changes under the influence of the Semantic Web
(SW) initiative, the need to capture the semantics of the application data in-
creases. In the typical application representing SW ideas, the semantic annota-
tion of Web resources is crucial. As the illustrative example we showed how the
Hera methodology addresses this issue and how RDF(S) can help to improve
the querying multimedia information systems. We presented an RDF(S)-based
integration model and illustrated its use in a multimedia federated IS.

Essential in the use of RDF(S) are the ontologies. They help to organize
the resources in terms of their semantics, and thus offer a nice specification
of the semantics of the entire application. However, for many applications this
specification in terms of ontologies needs to be used by humans. The end-users
use such an ontology to find or search for terms and to mentally reason about



Designing a Federated Multimedia Information System on the Semantic Web 373

these terms. Before they are constructing actual queries on the RDF metadata
they need to familiarize with the ontology. For this purpose an effective visual
representation of ontologies is vital. We addressed this issue providing a visual
interface in which the user is able to view the ontology both from the viewpoint
of classes and that of properties. This interface also assists in the generation of
RQL queries.

In the future we plan to help also the designer by turning this interface into
an authoring tool which would allow for specification of the models used in the
Hera methodology. From the integration perspective we intend to address the
issue of query relaxation which would allow to retrieve approximate results in
the case when the exact query does not succeed to find an answer.

References

1. Richard Vdovjak and Geert Jan Houben. Providing the semantic layer for wis
design. In Advanced Information Systems Engineering, 14th International Con-
ference, CAiSE 2002, volume 2348 of Lecture Notes in Computer Science, pages
584–599. Springer, 2002.

2. Flavius Frasincar, Geert Jan Houben, and Richard Vdovjak. Specification frame-
work for engineering adaptive web applications. In The Eleventh International
World Wide Web Conference, Web Engineering Track, 2002.
http://www2002.org/CDROM/alternate/682/.

3. Nora Koch, Andreas Kraus, and Rolf Hennicker. The authoring process of the
uml-based web engineering approach. In First International Workshop on Web-
Oriented Software Technology, 2001.

4. Reinhold Klapsing and Gustaf Neumann. Applying the resource description frame-
work to web engineering. In Electronic Commerce and Web Technologies, First In-
ternational Conference, EC-Web 2000, volume 1875 of Lecture Notes in Computer
Science, pages 229–238. Springer, 2000.

5. Ora Lassila and Ralph R. Swick. Resource description framework (rdf) model and
syntax specification. W3C Recommendation 22 February 1999.

6. Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf
schema. W3C Working Draft 30 April 2002.

7. Gregory Karvounarakis, Vassilis Christophides, Dimitris Dimitris Plexousakis, and
Sofia Alexaki. Querying rdf descriptions for community web portals. In 17iemes
Journees Bases de Donnees Avancees, pages 133–144, 2001.

8. J. Broekstra and A. Kampman. Sesame: A generic architecture for storing and
querying rdf and rdf schema. Aidministrator Nederland b.v. October 2001.

9. Richard Vdovjak and Geert Jan Houben. Rdf-based architecture for semantic
integration of heterogeneous information sources. In International Workshop on
Information Integration on the Web, 2001.

10. Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-local context for
semantic matching. In Workshop on Ontologies and Information Sharing at the
Seventeenth International Joint Conference on Artificial Intelligence, 2001.

11. Jeffrey D. Ulman. Information integration using logical views. In Proceedings of
the 6th Int. Conference on Database Theory, ICDT’97, volume 1186 of Lecture
Notes in Computer Science, pages 19–40. Springer, 1997.

http://www2002.org/CDROM/alternate/682/

	Introduction
	Hera Methodology
	Related Work

	RDF, RDFS, RQL and Their Role in Hera
	Integration and Data Retrieval
	Conceptual Model
	Sources
	Integration Model 
	Integration Model Instance
	Data Retrieval

	Hera Front-End
	Visualizing the CM
	The EROS Interface
	Query Generation Support

	Conclusions and Future Work

